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Abstract—Subspace learning methods are very sensitive to the illumi-
nation, translation, and rotation variances in image recognition. Thus,
they have not obtained promising performance for palmprint recognition
so far. In this paper, we propose a new descriptor of palmprint named
histogram of oriented lines (HOL), which is a variant of histogram
of oriented gradients (HOG). HOL is not very sensitive to changes
of illumination, and has the robustness against small transformations
because slight translations and rotations make small histogram value
changes. Based on HOL, even some simple subspace learning methods
can achieve high recognition rates.

Index Terms—Biometric, histogram of oriented gradients (HOG), palm
line, palmprint recognition, subspace learning.

I. Introduction

In recent years, palmprint recognition has drawn wide
attention from researchers. In general, palmprint recognition
is using the palm of the person to identify or verify who
the person is. Some previous researches have shown that,
compared with fingerprint or iris-based personal biometrics
systems, palmprint-based biometrics system has several special
advantages, such as stable line features, less distortion, and
easy self positioning. And, it can also obtain high-recognition
rate with fast processing speed [1]. For the aforementioned
reasons, nowadays the research related to palmprint recogni-
tion is becoming more and more active.

So far, there have been many approaches proposed for
palmprint recognition [1]–[12]. Kong et al. [2] made a survey
for these approaches and divided them into several different
categories. For texture-based approaches, wavelet transform,
discrete cosine transform, local binary pattern (LBP), and other
statistical methods were used for texture feature extraction [2].
There are also some line-based approaches as lines including
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principal lines and wrinkles are essential and basic features
of palmprint [3], [4]. It has been proved that coding-based
approaches including ordinal code [5], robust line orienta-
tion code (RLOC) [6], competitive code [7], [8] and binary
orientation co-occurrence vector [9] have achieved promis-
ing recognition performance. Recently, correlation methods
such as optimal tradeoff synthetic discriminant function filter
[10] and band-limited phase only correlation filter (BLPOC)
[11] have also been successfully adopted for palmprint
recognition.

In the past two decades, the study on subspace learning
techniques was also very active [13]–[19]. Many different
representative subspace learning methods have been proposed.
In the early stage of the research in this field, almost all
representative algorithms including principal component anal-
ysis (PCA) [13] and linear discriminant analysis (LDA) [13]
require that the 2-D image data must be reshaped into 1-D
vector, which can be referred to as the strategy of “image-as-
vector.” In recent years, some important progress has been
made in the research of subspace learning. Among them,
three strategies should be highlighted. The first strategy is
the kernel method, which uses a linear classifier algorithm
to solve nonlinear problems by mapping the original non-
linear observations into a higher dimensional space. Kernel
PCA (KPCA) [14] and kernel LDA (KLDA) [14] are two
representative kernel-based methods. The second strategy is
the manifold learning method, which is based on the idea that
the data points are actually samples from a low-dimensional
manifold that is embedded in a high-dimensional space. The
last strategy is matrix and tensor embedding methods. Matrix
embedding methods, such as 2-D PCA (2DPCA) [15] and
2-D LDA (2DLDA) [16], can extract a feature matrix using
a straightforward image projection technique. In addition,
tensor embedding methods, such as tensor subspace analysis
(TSA) [17], concurrent subspaces analysis (CSA) [18], and
multilinear discriminant analysis (MDA) [19], can represent
the image ensembles by a higher order tensor and extract low-
dimensional features using multilinear algebra methods.

The subspace learning methods have been widely applied
to biometrics including palmprint recognition. Lu et al. [20]
and Wu et al. [21] proposed two methods based on PCA
and LDA, respectively. Connie et al. [22] proposed several
PCA/LDA/Independent component analysis-based approaches.
Hu et al. [23] employed 2-D locality preserving projections
(2DLPP), Yang et al. [24] proposed unsupervised discriminant
projection, and Zuo et al. [25] presented a post-processed LDA
for palmprint recognition. In general, these aforementioned
approaches were directly applied to original palmprint images.
In this paper, we call original image as original representa-
tion (OR) of palmprint. However, subspace learning methods
utilizing OR have one obvious shortcoming, i.e., they are
sensitive to illumination, translation, and rotation variances
even if these variances are small. Thus, the recognition rates
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of subspace learning methods are obviously worse than that
of coding and correlation-based methods. In order to in-
crease the discriminating power, Gabor wavelet representation
(GWR) was often exploited to help impove the performance
of subspace learning methods. Ekinci and Aykut [26] pro-
posed a palmprint recognition approach integrating GWR and
KPCA. Pan and Ruan [27], [28]. proposed two approaches
using Gabor feature, in which (2D)2PCA and 2DLPP were
adopted for dimensionality reduction, respectively. However,
the drawback of GWR is its high-computational cost. Although
some researchers exploited Adaboost algorithm to select a
sub-set of GWR to improve the computational efficiency and
recognition performance, the effectiveness of this strategy
has not been fully validated [29]. In [30], we proposed
the directional representation (DR) of palmprint. Using DR,
those subspace learning methods are robust to illumination
variance. However, their sensitivity to translation and rotation
variances has not been solved. From the above analysis, it
can be seen that designing novel representation of palmprint,
which is robust to slight illumination, translation, and rotation
variances, is a crucial issue for subspace learning methods. Un-
fortunately, this issue has not been well discussed and solved
until now.

Histogram of oriented gradients (HOG) descriptor was
initially proposed by Lowe in his scale invariant feature
transform (SIFT) [31]. Dalal and Trigges [32] proposed using
HOG features to solve the pedestrian detection problem.
Meanwhile, HOG descriptor has been successfully applied to
other object detection and recognition tasks [33]. However,
for palmprint recognition, gradient exploited in HOG is not
a good tool to detect the line responses and orientation of
pixels because different palm lines have different widths and
there are complicated intersections between lines. In this paper,
we propose the histogram of oriented lines (HOL) descriptor,
a variant of HOG, for palmprint recognition, which exploits
line-shape filters or tools such as the real part of Gabor
filter and modified finite radon transform (MFRAT) [3] to
extract line responses and orientation of pixels. Compared
with OR, DR, and GWR, HOL has two obvious advantages.
First, using oriented lines and histogram normalization, HOL
has better invariance to changes of illumination. Second,
HOL has the robustness against transformations because slight
translations and rotations make small histogram value changes.
In addition, line-shape filters and tools used in HOL can well
calculate the line response and orientation of pixels. There
is no doubt that, owing to these merits, HOL descriptor will
help subspace learning methods achieve promising recognition
rates.

II. HOL Descriptor

A. Brief Review of HOG

An example of generating HOG is depicted in Fig. 1.
Given an image I , the main steps of generating HOG are

presented as follows:

Step 1: Divide the whole image into n × n non overlapping
Cells. Each Cell contains c1 × c2 pixels.

Fig. 1. Procedure of generating HOG.

Step 2: Construct a Block by integrating b1 × b2 Cells. Two
adjacent Blocks can overlap.

Step 3: For each pixel, I(x, y), the gradient magnitude
m(x, y), and orientation θ(x, y) are computed by

dx = I(x + 1, y) − I(x − 1, y) (1)

dy = I(x, y + 1) − I(x, y − 1) (2)

m(x, y) =
√

dx2 + dy2 (3)

θ(x, y) = tan−1

(
dy

dx

)
. (4)

Step 4: Divide the orientation range (0°–180°) into k bins.
And then calculate the histogram within Cell (HC)

HC(k)i=HC(k)i+m(x, y) if I(x, y) ∈ Celli and θ(x, y) ∈ bin(k)

Step 5: The histogram of a Block (HB) can be obtained by
integrating the HCs within this Block

HBj = {HC1, HC2, . . . , HCb1 × b2}.
Then, normalize the vector of HBj (NHB)j by L2-norm

block normalization

NHBj =
HBj√∥∥HBj

∥∥2
2 + e2

(5)

where e is a small constant to avoid the problem of division
by zero. If there are N Blocks in an image, the last histogram,
HOG, can be obtained by integrating all normalized Block’s
histograms

HOG =
{

NHB1, NHB2, . . . , NHBj, . . . , NHBN

}
. (6)
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Fig. 2. Real parts of three Gabor filters at the angles of 0°, 90°, and 45°.

Fig. 3. 9 × 9 MFRAT at the angle of 0°, 90°, and 45°. Red point is the center
of the lattice. Black and red points make up lines at different directions.

Generally, a Block consists of 2 × 2 Cells.

B. HOL Descriptor

There are different line-shape filters or tools to extract
line and orientation feature of a palmprint, e.g., the real
part of Gabor filter used in competitive code [7], Gaussian
filter adopted in ordinal code [5], and MFRAT utilized in
RLOC [6]. In this paper, the real part of Gabor filter and
MFRAT will be exploited to generate HOL descriptor of
palmprint.

Gabor filter is a powerful tool in computer vision and
pattern recognition. Recently, some new methods combining
Gabor feature and local descriptors, such as local Gabor XOR
patterns (LGXP) [34] and local Gabor binary patterns (LGBP)
[35], have been proposed for face recognition and achieved
impressive recognition performance.

In general, 2-D circular Gabor filter has the following form:

G(x, y, θ, μ, σ) =
1

2πσ2
exp

{
−x2 + y2

2σ2

}

exp{2πi(μx cos θ + μy sin θ)} (7)

where i =
√−1, μ is the frequency of the sinusoidal wave, θ

controls the orientation of the function, and σ is the standard
deviation of the Gaussian envelop. Based on this Gabor
function, a Gabor filter bank with one scale and k directions
can be created. The direction θm is calculated as follows:

θm =
π(m − 1)

k
, m = 1, 2, . . . , k. (8)

Three examples of the real part of Gabor filter at the angles
of 0°, 90°, and 45°, are presented in Fig. 2.

Given a palmprint image I , the steps of extracting the line
responses and orientation of pixels in palmprint using the
real part of Gabor filter bank can be briefly summarized as
follows.

Step 1: Convoluting image I using the real part of designed
Gabor filter bank to generate M filtered images.

Fig. 4. Line response maps and orientation maps calculated by gradient,
Gabor filter, and MFRAT. (a) Original palmprint image. (b) Line response
map calculated by gradient. (c) Orientation map calculated by gradient.
(d) Line response map calculated by Gabor filter. (e) Orientation map
calculated by Gabor filter. (f) Line response map calculated by MFRAT.
(g) Orientation map calculate by MFRAT.

Step 2: The response m(x, y)Gabor and orientation θ(x, y)Gabor

of each pixel can be obtained by the following two
equations:

m(x, y)Gabor = min(I(x, y) ∗ G(x, y, θk)) (9)

θ(x, y)Gabor = arg mink(I(x, y) ∗ G(x, y, θk)) (10)

where * means the convolution operation.
If we use m(x, y)Gabor and θ(x, y)Gabor to replace m(x, y)

and θ(x, y) in (3) and (4), the HOL descriptor will be created.
In this paper, the HOL descriptor created by Gabor filter is
denoted as HOLGabor.

The MFRAT is defined as follows: denoting Zp = {0, 1, . . . ,
(p – 1)}, where p is a positive integer, the MFRAT on the finite
grid Z2

p is defined as

r[Lk] = MFRATf (k) =
∑

i,j∈Lk

f [i, j] (11)

where f [x, y] is the pixel value located in (x, y) and Lk denotes
the set of points that make up a line on the lattice Z2

p, which
means

Lk = {(i, j) : j = Sk(i − i0) + j0, i ∈ Zp} (12)
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Fig. 5. 2DHOG or 2DHOL.

where (i0, j0) denotes the center point of the lattice Z2
p and

k means the index value corresponding to a slope of Sk. That
is to say, different k denotes different slopes of Lk. For any
given k, the summation r[Lk] of only one line, which passes
through the center point (i0, j0) of Z2

p, is calculated. Actually,
r[Lk] is the energy of line Lk.

In the MFRAT, if there is a genuine line which passes
through the center point of Z2

p, we can obtain the energy
m(x, y)MFRAT and orientation θ(x, y)MFRAT of this center point
by the following equations:

m(x, y)MFRAT = min(r[Lk]) (13)

θ(x, y)MFRAT = arg mink(r[Lk]). (14)

An example of MFRAT is depicted in Fig. 3. Similarly,
if we use m(x, y)MFRAT and θ(x, y)MFRAT to replace m(x, y)
and θ(x, y) in (3) and (4), the HOL descriptor will be created.
Similarly, the HOL descriptor generated by MFRAT is denoted
as HOLRadon in this paper.

Fig. 4 shows line response and orientation maps calculated
by gradient, Gabor filter, and MFRAT. It should be noted
that, in orientation map, different gray values denote different
orientations. From Fig. 4, it can be seen that the real part of
Gabor filter and MFRAT can better extract the line response
map and orientation of pixels.

In (6), HOG is constructed as a vector. In fact, HOG or HOL
can be created as a matrix as shown in Fig. 5, in which each
row is NHBj . For convenience, we call HOG or HOL in matrix
form as 2DHOG or 2DHOL. Using 2DHOG and 2DHOL,
some matrix or tensor-based subspace learning methods, such
as 2DPCA [15], 2DLDA [16], TSA [17], CSA [18], and MDA
[19], can be performed for dimensionality reduction.

III. Experiments

A. Databases

The proposed approach was tested on two palmprint
databases, which are The Hong Kong Polytechnic University
Palmprint Database II (PolyU II) [1] and the blue band of The
Hong Kong Polytechnic University Multispectral Palmprint
Database (PolyU M−B) [36].

PolyU II database contains 7752 grayscale palmprint images
from 386 palms corresponding to 193 individuals. In this
database, about 20 samples from each of these palms were
collected in two sessions, where about 10 samples were
captured in the first session and the remaining 10 samples

were captured the second session. The total numbers of images
captured in the first session and the second session are 3889
and 3863, respectively.

PolyU M−B database contains 6000 grayscale palmprint
images from 500 palms corresponding to 250 individuals [36].
In this database, about 12 samples from each of these palms
were collected in two sessions, where 6 samples were captured
in the first session and the remaining 6 samples were captured
in the second session.

In PolyU II database and PolyU M−B database, palmprint
is orientated and the ROI image, whose size is 128 × 128, is
cropped using the similar preprocessing approach described in
the literature [1].

In this paper, we exploit several representative subspace
learning methods for dimensionality reduction. For HOG and
HOL, PCA, LDA, SRDA [37], and their kernel versions
(KPCA, KLDA, and KSRDA) are exploited. For 2DHOG and
2DHOL, the methods of 2DPCA, 2DLDA, TSA, CSA, and
MDA are used.

In our method, Euclidean distance is adopted for matching.
A matching is conducted by the following steps.

Step 1: Extracting HOL descriptor from each image in train-
ing set and test set.

Step 2: Based on HOL descriptor, using subspace learing
method for dimensionality reduction to get feature
vectors (or matrices or tensors).

Step 3: The distance between two arbitrary feature vectors,
A = [a1, a2, . . . , ai] and B = [b1, b2, . . . , bi], is
defined by

d(A, B) =
i∑

j=1

∥∥aj − bj

∥∥
2 (15)

where ||aj −bj||2 denotes the Euclidean distance between two
vectors.

In two databases, both verification and identification exper-
iments are conducted.

Verification is a one-to-one comparison, which answers the
question of ‘whether the person is whom he claims to be.’
In the verification experiments, the statistical value of equal
error rate (EER) is adopted to evaluate the performance of
different methods. In experiments, the statistical pairs of false
reject rate (FRR) and false accept rate (FAR) were used to
calculate EER. In a palmprint database, two image sets were
constructed, i.e., training set and test set. Here, we suppose that
each palm provides n palmprint training images (templates) in
training set. To obtain the statistical pairs of FRR and FAR,
each of the test images was matched with all of the templates
in the training set. If the test image and the template are from
the same palm, the matching between them is remarked as a
correct matching. Likewise, an incorrect matching can also
be defined in a similar manner. Because each palm has n
templates in the training database, each test image can thus
generate n scores. The maximum of them is regarded as a
correct matching score at last. Similarly, when a test image
matches with another template that comes from a different
palm, n incorrect scores can be calculated, and the maximum
of them is regarded as an incorrect verification matching score.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JIA et al.: HOLS FOR PRIMPRINT RECOGNITION 5

Fig. 6. Six palmprint ROI images from a same palm in PolyU II database.
(a) Three images captured in the first session. (b) Three images captured in
the second session.

After all test images matched with all templates in training set,
the statistical values of FRR, FAR, and EER can be calculated.

Identification is a one-to-many comparison, which answers
the question of who the person is. In this paper, the close-set
identification is conducted. That is we know all enrollments
exist in the training set. In order to obtain identification
accuracy, the rank 1 identification rate (recognition rate) is
used, in which a test image will be matched with all templates
in training set, and the label of the most similar template will
be assigned to this test image.

B. Experimental Results on PolyU II Database

Fig. 6 depicts six palmprint ROI images of PolyU II
database, which were captured from a same palm but in differ-
ent sessions. The three images in the first row [Fig. 6(a)] were
captured in the first session while the images in the second
row [Fig. 6(b)] were captured in the second session. It can
be seen that there are drastic changes of illumination between
the images captured in different sessions. In this regard, PolyU
II is a challenging database. Before the experiments of HOG
and HOL are conducted, some important parameters should
be firstly determined such as the size of Cell, the number of
direction bins k, the value of p in MFRAT, and the value
of μ in Gabor filter. In PolyU II database, we use the first
three palmprint images from the first session for training
(1158 images) and use the remaining palmprint images (2731
images) from the first session as the validation set to determine
parameters. All palmprint images (3863 images) from the
second session are used as probe images to evaluate the
recognition performance of the proposed method.

For HOG and HOL, after conducting numerous experiments
using validation set, the size of a Cell is determined as 16 × 16,
and the number of bins k is determined as 12. As a result, for
a palmprint ROI image with the size of 128 × 128, there are
total 64 (8 × 8) Cells and 49 (7 × 7) Blocks, and the dimension
of overall histogram is 2352 (12 × 2 × 2 × 49). Consequently,
the size of 2DHOG and 2DHOL is 49 × 48.

For HOLGabor, the value of σ in Gabor filter is set to
5.6179 [1]. Thus, the only parameter of Gabor filter we will
determine is μ, which controls the band width of Gabor filter.

Fig. 7. Recognition rates of PCA, LDA, and (PCA + LDA)/2 on HOLGabor
descriptor under different values of μ in Gabor filter.

Fig. 8. Recognition rates of PCA, LDA, and (PCA + LDA)/2 on HOLRadon
descriptor under different values of p in MFRAT.

Fig. 9. Recognition rates of PCA on different representations.

For HOLRadon, the only parameter is the value of p in MFRAT.
Two experiments are conducted on validation set for parameter
selection. And the mean of recognition rates of PCA and
LDA, which is denoted as (PCA + LDA)/2, is exploited as
the evaluation criterion. Fig. 7 depicts the recognition rates
of PCA, LDA, and (PCA + LDA)/2 on HOLGabor, while the
value of μ changes from 0.04 to 0.16 at the interval of 0.01.
It can be seen that the (PCA + LDA)/2 achieves recognition
rate of 100% when the value of μ is in the range of [0.1,
0.15]. In this paper, the value of μ in Gabor filter is selected
as 0.11 in the remaining experiments. Fig. 8 depicts the
recognition performance of (PCA + LDA)/2 on HOLRadon. It
can be seen that when the value of p in MFRAT is 9, 11, or
13, (PCA + LDA)/2 achieves recognition rate of 100%. Here,
the value of p is selected as 11 in the remaining experiments.

We then conduct identification experiments using probe set.
Figs. 9–11 depict the recognition rates of PCA, LDA, and
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Fig. 10. Recognition rates of LDA on different representations.

Fig. 11. Recognition rates of SRDA on different representations.

SRDA on different representations under different dimensions.
Table I also lists the recognition rates and corresponding
dimensions of vector-based subspace learning methods on
different representations. From Figs. 9–11 and Table I, we
can see that using HOLGabor and HOLRadon, all vector-based
subspace learning methods achieved very high recognition
rates. Particularly, the recognition rate of proposed method is
99.97%, which is a very promising recognition performance.
Table II lists the recognition rates and corresponding dimen-
sions of matrix or tensor-based subspace learning methods.
From the experimental results, it can be concluded that the
proposed HOL/2DHOL descriptors have more discriminative
power than OR, DR, and HOG/2DHOG representations.

In Tables I and II, the recognition rates of several ‘image-
as-vector’ methods, kernel-based methods, matrix and tensor-
based methods are reported. The experimental results demon-
strate that HOL or 2DHOL descriptor is valid for these
representative subspace learning methods.

In Table III, we make a performance comparison of identi-
fication experiments between the proposed method and other
methods, all of which were tested on PolyU II database. Here,
we select the recognition rate (99.97%) of KSRDA + HOLRadon

for performance comparison because it is the highest recog-
nition rate achieved by the proposed method. The recognition
rate of KPCA + GWR method proposed by Ekinci and Aykut
is 95.17% reported in [26], which is much worse than that of

the proposed method. It should be noted about 10 images of
each palm captured in the first session are used for training in
Ekinci’s method. In this paper, we also conduct an experiment
combining MDA and GWR. To do this, we use 40 Gabor
wavelet kernels at the eight orientations and five scales to
convolute a palmprint image to generate a third-order tensor,
and then the MDA method is adopted for dimensionality
reduction. The recognition rate of MDA + GWR method is
98.81% (the corresponding dimension is 9 × 9 × 7), which
is also obviously worse than that of the proposed method.
These comparisons demonstrate that the proposed HOL is
more discriminative than GWR. The recognition rate of post-
processed LDA + OR method proposed recently is 96.97%
[25]. This result again demonstrates that using OR, sub-
space learning methods cannot obtain desired recognition
performance.

Using the experimental protocol same to the proposed
method, we conduct the identification experiments of other
methods, i.e., RLOC [6], original competitive code [7], ordi-
nal code, BLPOC, LBP [34], LGXP [35], and LGBP [34]
by ourselves. The recognition rates of them are listed in
Table III. For LBP, LGXP, and LGBP methods, we adopted
the parameters in their original literatures. In competitive code
[7], two parameters of 2-D ellipsoidal Gabor filter ω and δ,
were set to 0.5 and 1.5, respectively. In ordinal code [5], two
parameters of 2-D Gaussian filter δx and δy, were set to 5 and
1, respectively. Meanwhile, the size of 2-D ellipsoidal Gabor
filter in competitive code and 2-D Gaussian filter in ordinal
code is 40 × 40. In RLOC [6], we use 16 × 16 MFRAT, whose
width of the lines is four pixels, to extract RLOC feature. In
BLPOC [11], because the ROI image of palmprint is a square
and its Fourier spectrum is a square, the selected center area of
the 2-D discrete Fourier transform spectrum is also a square,
whose band size is J × J . In the experiments on PolyU II
database, the value of J is set to 32. It should be noted
that peak-to-sidelobe ratio is adopted as similarity measure
in BLPOC [38]. In the methods of LBP, LGXP, and LGBP,
we use the same setting in [34], [35].

In Table III, it can be seen that the recognition rate of the
proposed method is very close to the recognition rates of three
orientation coding methods, i.e., RLOC, competitive code, and
ordinal code, meanwhile, obviously better than that of methods
of BLPOC, LBP, LGXP, and LGBP. It should be noted that
the results of methods competitive code, ordinal code, BLPOC,
LBP, LGXP, and LGBP are based on our reimplementation.
Thus, bias may be unavoidable.

The results listed in Tables I and II demonstrate that the
proposed HOL descriptor is valid for these representative
subspace learning methods and has more discriminative power
than OR, DR, and HOG/2DHOG representations. In addition,
the results listed in Table III show that the performance of the
proposed method is comparable to some leading palmprint
recognition methods for identification. In other words, the
results listed in Tables I–III demonstrate that the effectiveness
of the proposed method from different aspects.

In verification experiments, five methods are tested, which
are BLPOC, RLOC, ordinal code, competitive code, and the
proposed method. Here, it should be noted that BLPOC,
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TABLE I

Recognition Rate (%) of Vector-Based Methods on Different Representations and Corresponding Dimension (in the

Indentification Experimets on PolyU II Database)

PCA KPCA LDA KLDA SRDA KSRDA
OR 79.42 (380) 79.42 (380) 94.15 (70) 94.72 (310) 93.09 (380) 94.77 (360)
DR 98.19 (370) 98.16 (380) 97.93 (70) 97.59 (360) 97.77 (290) 97.75 (340)

HOG 95.37 (360) 95.37 (350) 97.13 (220) 97.57 (380) 97.39 (380) 98.03 (360)
HOLGabor 99.87 (220) 99.84 (210) 99.92 (330) 99.95 (270) 99.84 (280) 99.95 (320)
HOLRadon 99.69 (310) 99.69 (270) 99.95 (380) 99.95 (270) 99.97 (340) 99.97 (340)

TABLE II

Recognition Rates (%) of Matrix or Tensor-Based Methods on Different Representations and Corresponding Dimension (in the

Indentification Experimets on PolyU II Database)

2DPCA 2DLDA TSA CSA MDA
OR 80.43 (128 × 18) 95.11 (128 × 12) 95.05 (19 × 19) 96.45 (10 × 10) 96.92 (11 × 11)
DR 98.63 (128 × 17) 99.07 (128 × 15) 99.15 (15 × 15) 98.73 (12 × 12) 99.33 (13 × 13)
2DHOG 95.68 (49 × 35) 96.19 (49 × 26) 95.99 (40 × 40) 92.83 (31 × 31) 94.33 (23 × 23)
2DHOLGabor 99.84 (49 × 32) 99.90 (49 × 19) 99.90 (35 × 35) 99.90 (34 × 34) 99.87 (29 × 29)
2DHOLRadon 99.66 (49 × 29) 99.77 (49 × 28) 99.77 (39 × 39) 99.82 (20 × 20) 99.84 (34 × 34)

TABLE III

Recognition Rate of Different Methods in Identification

Experiments

Method Recognition rate (%)
KPCA + GWR [26] 95.17
Post-processed LDA + OR [25] 96.97
MDA + GWR 98.81
RLOC 100
Competitive code 100
Ordinal code 100
BLPOC 99.53
LBP 82.32
LGXP 99.51
LGBP−Phase 99.56
LGBP−Magtitude 99.28
Proposed method 99.97

TABLE IV

EER of Different Methods in Verification Experiments

Conducted on PolyU II Database

EER(%)
BLPOC 0.24
RLOC 0.057
Ordinal code 0.025
Competitive code 0.048
Proposed method 0.31

RLOC, ordinal code, and competitive code are four represen-
tative methods for palmprint recognition. Among all kinds of
the proposed methods, we select LDA + HOLRadon to conduct
verification experiment. Here, the dimension of LDA is set
to 380. The EERs of these methods are listed in Table IV.
In order to better illustrate the verification performances, the
receiver operating characteristic (ROC) curves of five methods
are illustrated in Fig. 12, which plots the FAR against the
genuine accept rate (GAR). From Table IV and Fig. 12, it
can be seen that the verification performance of the proposed

Fig. 12. ROC curves of methods BLPOC, competitive code, ordinal code,
RLOC, and proposed method (LDA + HOLRadon) on PolyU II database.

Fig. 13. Six palmprint ROI images from a same palm in PolyU II database.
(a) Three images captured in the first session. (b) Three images captured in
the second session.

method is near to BLPOC, but far worse than that of three
orientation-based methods.

From Table III, it can be seen that the identification perfor-
mance of the proposed method is comparable to coding-based
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TABLE V

Recognition Rate (%) of Vector-Based Methods on Different Representations and Corresponding Dimension (in the

Indentification Experiments on PolyU M−B Database)

PCA KPCA LDA KLDA SRDA KSRDA
OR 90.43 (200) 90.37 (230) 96.30 (70) 94.13 (380) 96.10 (360) 96.07 (360)
DR 97.60 (170) 97.77 (170) 97.97 (120) 96.70 (310) 97.37 (290) 97.43 (300)
HOG 98.73 (280) 98.77 (300) 99.17 (150) 99.13 (320) 99.00 (300) 99.37 (300)
HOLGabor 99.73 (370) 99.73 (370) 99.97 (330). 100 (330) 99.93 (340) 100 (290)
HOLRadon 99.77 (350) 99.73 (370) 99.97 (200) 99.97 (350) 99.97 (340) 99.97 (290)

TABLE VI

Recognition Rate (%) of Matrix or Tensor-Based Methods on Different Representations and Corresponding Dimension (in the

Indentification Experiments on PolyU M−B Database)

2DPCA 2DLDA TSA CSA MDA
OR 91.60 (128 × 18) 97.70 (128 × 12) 98.10 (13 × 13) 98.00 (9 × 9) 97.80 (11 × 11)
DR 97.87 (128 × 17) 98.67 (128 × 16) 98.83 (18 × 18) 98.43 (11 × 11) 99.00 (10 × 10)
2DHOG 98.50 (49 × 26) 98.90 (49 × 26) 98.37 (38 × 38) 96.60 (27 × 27) 98.87 (18 × 18)
2DHOLGabor 99.77 (49 × 40) 99.70 (49 × 27) 99.67 (37 × 37) 99.87 (24 × 24) 99.83 (38 × 38)
2DHOLRadon 99.83 (49 × 38) 99.80 (49 × 35) 99.83 (33 × 33) 99.83 (15 × 15) 99.93 (33 × 33)

methods. However, in Table IV, the verification performance
of the proposed method is worse than that of coding-based
methods. This result demonstrates that the proposed method
may be more suitable for identification.

C. Experimental Results on PolyU M−B Database

Fig. 13 depicts six palmprint ROI images of PolyU M−B
database, which were captured from a same palm. The three
images in first row [Fig. 13(a)] were captured in the first
session while the images in second row [Fig. 13(b)] were
captured in second session. In PolyU M−B database, the first
three palmprints from the first session are used for training
and the palmprints from the second session are adopted for
test. So, the numbers of images for training and test are 1500
and 3000, respectively. In the experiments of HOL on PolyU
M−B database, we adopted the same parameters determined
in the experiments on PolyU II database.

Since BLPOC, RLOC, ordinal code, competitive code are
four representative methods for palmprint recognition, we only
select them to make performance comparison.

On PolyU M−B database, we firstly conduct identifica-
tion experiments using different subspace learning methods
on different palmprint representations. Tables V and VI list
the recognition rates and corresponding dimensions of all
subspace learning methods. Obviously, the recognition per-
formances of HOL/2DHOL are also far better than that of
OR, DR, and HOG/2DHOG representation. Specially, the
recognition rate of proposed method is 100%, which is a very
encouraging recognition result.

In order to make an identification performance comparison,
we conduct identification experiments of methods RLOC,
competitive code, ordinal code, and BLPOC. In these methods,
we use the same parameter setting in the experiments of
PolyU II database. Here, we select the recognition rate (100%)
of KSRDA + HOLGabor for performance comparison because
it is the highest recognition rate achieved by the proposed
method. The recognition rates of different methods are listed

TABLE VII

Recognition Rate of Different Methods in Identification

Experiments

Method Recognition rate (%)
RLOC 100
Competitive code 100
Ordinal code 100
BLPOC 99.9
Proposed method 100

TABLE VIII

EER of Different Methods in Verification Experiments

Conducted on PolyU M−B Database

EER (%)
BLPOC 0.15
RLOC 0.03
Ordinal code 0.03
Competitive code 0
Proposed method 0.064

in Table VII. It can be seen that all methods achieved very
high recognition rate, which is about 100%.

In verification experiments, five methods are tested, which
are BLPOC, RLOC, ordinal code, competitive code, and the
proposed method (LDA + HOLRadon). Here, the dimension of
LDA is set to 220. The EERs of five methods are listed in
Table VIII. In PolyU M−B database, the EER of competitive
code is 0, and the EER of proposed method is close to the
methods of RLOC and ordinal code. In Fig. 14, we also
illustrate the ROC curves of the methods BLPOC, ordinal
code, RLOC, and the proposed method (LDA + HOLRadon). As
the EER of the method of competitive code is 0, its ROC curve
is not depicted in Fig. 14. From Table VIII and Fig. 14, it can
be seen that the performance of BLPOC is the worst.
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Fig. 14. ROC curves of methods BLPOC, ordinal code, RLOC, and the
proposed method (LDA + HOLRadon) on PolyU M−B database.

TABLE IX

Time of Generating Descriptor

Descriptor Constructing time (ms)
HOG 12
HOLGabor 280
HOLRadon 80

D. Time of Generating Descriptor

For real applications, the time of generating feature is
an important issue. In this section, we report the time of
generating descriptor. This paper is performed on a notebook
PC with an Intel i5-2520 M CPU (2.50 GHz) and 4 GB RAM
con-figured with Microsoft Windows 7 and MATLAB 2009
with image processing toolbox. The times of generating HOG,
HOLGabor, and HOLRadon are 12, 280, and 80 ms, respectively,
which are listed in Table IX. It could be seen that the speed
of constructing HOLRadon is obviously faster than that of
HOLGabor. In fact, we have not completely optimized the
program codes, so it is possible for us to further reduce the
computation time.

E. Discussions

As we have mentioned above, PolyU II is a challenging
database because there are drastic changes of illumination
between the images captured in different sessions. Those
subspace learning methods using the proposed HOL desciptor
can achieve much better recogniton rates than that of using
OR. It could be concluded that the proposed HOL descriptor is
robust to slight illumination changes. However, the verification
performances of the proposed method are very different on
these two databases. On the PolyU II database, the verification
performance of the proposed method is obviously worse than
that of three orientation-based methods. But, on the PolyU
M−B database, the verification performance of the proposed
method is close to three orientation-based methods. We know
all images in PolyU M−B database are captured in a stable

Fig. 15. Blocks within three images. (a) Original image. (b) Image after
rotation. (c) Image after translation.

Fig. 16. Plotted histograms. (a) Plotted histogram of original Block.
(b) Plotted histogram after rotation. (c) Plotted histogram after translation.

illumination condition. Therefore, we can say that subspace
learning methods using the proposed HOL descriptor can
achieve better verification performance in a stable illumination
condition.

In this paper, we have mentioned that the proposed HOL
has the robustness against small transformations because slight
shifts and rotations make small histogram value changes.
Here, an example is given. In HOL, the size of a Cell is
16 × 16, so the size of a Block containing 2 × 2 Cells is
32 × 32. In Fig. 15(a), a Block located in the center area is
presented using a white square. In Fig. 15(b) and (c), two
corresponding Blocks are illustrated after rotation (–5o) and
translation (three pixels), respectively. In Fig. 16, we plot
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TABLE X

Recognition Rates for Different Shift Values

0 1 2 3 4 5
PCA + HOLRadon 99.69 99.53 99.33 98.63 96.51 92.13
PCA + OR 79.42 77.30 72.79 65.66 56.92 48.10
LDA + HOLRadon 99.95 99.95 99.92 99.64 99.17 97.95
LDA + OR 94.15 92.60 88.38 81.72 72.82 60.96

Fig. 17. Recognition rates for different shift values of m (m = 1, 2, 3,4, 5).

TABLE XI

Recognition Rates for Different Rotation Values

0° −1° −2° −3° −4° −5°
PCA + HOLRadon 99.69 99.56 99.33 98.84 98.84 95.19
PCA + OR 79.42 78.72 77.43 74.81 70.88 66.35
LDA + HOLRadon 99.95 99.84 99.69 99.40 99.38 97.80
LDA + OR 94.15 93.53 92.80 91.30 88.58 84.75

the Block histograms (HOLRadon) within Fig. 15(a)–(c) [see
Fig. 16(a)–(c)], respectively. It can be seen that the changes of
histogram values are small after image rotation and translation.
Therefore, it is easy to understand why HOL descriptor can
help subspace learning methods achieve promising recognition
performance.

Here, we conduct some quantified identification experiments
using PCA and LDA on PolyU II database to further show
that the proposed HOL descriptor is robust to small transfor-
mations. In the first experiment, the training set (1158 images)
is unchanged, but all images (3863 images) in probe set shift
m (m = 1, 2, 3, 4, 5) pixels toward the left [see Fig. 15(c)].
The recognition rates of PCA and LDA on HOLradon and OR
are listed in Table X. In addition, corresponding results are
depicted in Fig. 17. In the second experiment, the training
set (1158 images) is also unchanged, but all images (3863
images) in probe set rotate k (k = –1°, –2°, –3°, –4°, –5°)
degree [see Fig. 15(b)]. The recognition rates of PCA and
LDA on HOLradon and OR are listed in Table XI. In, addition,
corresponding results are depicted in Fig. 18. These results
clearly show that small transformations have limited effect
for the performance of the methods of PCA + HOLradon and
LDA + HOLradon, but will drastically reduce the recognition
rates of PCA + OR and LDA + OR.

Fig. 18. Recognition rates for different rotation values of k (k = –1°, –2°,
–3°, –4°, –5°).

IV. Conclusion

This paper investigated how to improve the recognition per-
formance of subspace learning methods for palmprint recog-
nition. To do this, we proposed a new descriptor of palmprint
named HOL, which is robust to slight illumination, translation,
and rotation variances, and has better discriminative power
than OR, DR, and GWR. As a result, even some simple
subspace learning methods such as PCA and LDA can achieve
very promising recognition performances on PolyU II and
PolyU M−B databases. In our future work, we will adopt other
strategies to further improve the discriminative power of HOL
descriptor.
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