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Abstract: In this paper, the problem of Palmprint Recognition Across Different Devices 
(PRADD) is investigated, which has not been well studied so far. Since there is no publicly 
available PRADD image database, we created a non-contact PRADD image database 
containing 12,000 grayscale captured from 100 subjects using three devices, i.e., one 
digital camera and two smart-phones. Due to the non-contact image acquisition used, 
rotation and scale changes between different images captured from a same palm are 
inevitable. We propose a robust method to calculate the palm width, which can be 
effectively used for scale normalization of palmprints. On this PRADD image database, we 
evaluate the recognition performance of three different methods, i.e., subspace learning 
method, correlation method, and orientation coding based method, respectively. 
Experiments results show that orientation coding based methods achieved promising 
recognition performance for PRADD. 
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1. Introduction 

In recent years, palmprint recognition has drawn widespread attention from researchers. Generally, 
palmprint recognition involves using the person’s palm to identify who the person is or verify whether 
the person is “whom he claims to be”. Some previous researches have shown that, compared with 
fingerprints or iris- based personal biometrics systems, palmprint-based biometric systems have 
several special advantages such as rich features, less distortion and easy self-positioning [1–6]. And, it 
can also obtain high accurate recognition rate with fast processing speed [2–6]. For the aforementioned 
reasons, nowadays research on palmprint recognition is becoming more and more active [5,6]. 

Roughly speaking, the techniques of palmprint recognition can be divided into two categories, i.e., 
2-D based [5] and 3-D based [7], respectively. As their name suggests, 2-D based palmprint 
recognition techniques capture a 2-D image of the palm surface and use it for feature extraction and 
matching, while 3-D based techniques capture the 3-D depth information for recognition. As noted in 
the literature [7], 3-D palmprint recognition techniques offer some special advantages. For example, 
they are robust to illumination variations, contaminations and spoof attacks. However, the cost of 3-D 
data acquisition devices is high, which limits the usage of 3-D palmprint recognition techniques [7]. 
Therefore, 2-D palmprint recognition has drawn more attention in the past decade [6]. In this paper, we 
also focus on it.  

It is well known that the palm contains rich features such as minutiae, ridges, principal lines and 
creases. In a high-resolution (500 ppi or higher) palmprint image, all features mentioned above  
can be extracted. Recently, there have been several works related to high-resolution palmprint  
recognition [8,9]. In fact, most high-resolution palmprint recognition techniques are mainly developed 
for forensic applications as about 30 percent of the latents recovered from crime scenes are from  
palms [9]. On the other hand, for civil applications, the technique of low-resolution (about 100 ppi) 
palmprint recognition is enough for robust personal authentication. In this paper, our work also 
belongs to the low-resolution palmprint recognition category. In a low-resolution palmprint image, 
only principal lines and creases can be extracted to construct features. In the early stages of the study 
for low-resolution palmprint recognition, the inked offline methods were investigated [10]. However, 
the quality of inked palmprint image is very poor, therefore, researchers’ interest later turned to online 
palmprint recognition. Zhang et al. proposed the first online low-resolution palmprint recognition 
system, and published a palmprint image database, i.e., the PolyU database [5]. After that, research on 
palmprint recognition grew rapidly. In order to acquire low-resolution palmprint images, different 
devices were exploited. Ribaric et al. [11] used a digital scanner to collect palmprint images.  
Zhang et al. [5] and Sun et al. [12] developed CCD camera-based special devices for palmprint 
acquisition, respectively. Kumar et al. captured hand images using a digital camera [13]. In their  
works [5,11–13], the palmprint images were captured in the contact manner. Recently, there are more 
studies on contact-free palmprint recognition. Usually, web-cameras [14], cameras in smart phones, 
panel PCs, or notebook PCs were used to collect contact-free palmprint images. 

So far, many approaches have been proposed for low-resolution palmprint recognition.  
Kong et al. [6] made a survey of these approaches and divided them into several different categories 
such as texture based, palm line based, subspace learning based, orientation coding based, correlation 
based, local image descriptor based, and multi-feature based, respectively. From the literature [6], it 
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can be seen that most research works have focused on feature extraction and matching. In order to 
improve the recognition performance, other strategies were exploited. For example, Zhang et al. [15] 
proposed multi-spectral based palmprint recognition. Here, it should be noted that all of the previous 
studies of palmprint recognition only used one device to collect palmprint images. That is, the training 
set and test set were captured using a same device.  

In this paper, we investigate the problem of Palmprint Recognition Across Different Devices 
(PRADD), which has not been well studied so far. In fingerprint-based biometrics, the problem of 
biometric sensor interoperability has been investigated [16–18]. Biometric sensor interoperability 
refers to the ability of a system to compensate for the variability introduced in the biometric data of an 
individual due to the deployment of different sensors [18]. From the literature [16–18], it can be seen 
that poor inter-sensor performance has been reported for fingerprint recognition.  

With the wide applications of palmprint recognition and the popularization of all kinds of cameras, 
there is a high possibility that a person’s palmprint images would be captured by different devices. 
Therefore, the problem of PRADD needs to be carefully studied. The technique of PRADD has the 
following potential applications: (1) Remote enrollment in a palmprint based distributed biometrics 
system. For example, when a user plans to attend a meeting which will be held in another city far 
away, at first he may be required to provide his palmprint images captured by his camera. In this way, 
this user’s identity can be directly checked by another device at the meeting site. (2) Personal 
authentication anywhere. For example, if one person’s palmprint images have been recorded by a 
digital camera in the police station, the police can search for this person anywhere using other devices 
such as smart-phones with cameras. Consequently, the PRADD technique is very useful to look for a 
lost elderly person or a suspect. (3) Palmprint based biometrics in cloud computing. In the cloud 
computing environment, palmprint based biometrics can become a service in which the technique of 
PRADD is needed. For example, palmprint recognition can be a service of the cloud computing for 
personal authentication on a smart-phone. A user can register palmprints using his old smart-phone. 
When he buys a new smart-phone, he does need to not register the palmprints again. Also, the 
registered palmprints captured by the smart-phone can be used for personal authentication in a user’s 
other consumer electronics products such as a panel PC, or a notebook PC.  

In order to study the PRADD technique, we create a non-contact palmprint image database using 
three devices, i.e., one digital camera and two smart-phones. With the widespread application of digital 
cameras and smart-phones, the PRADD technique will be mainly used in such consumer electronics 
products, thus they were used to capture palmprint images in this work. 

The main contributions of our work are as follows: first, it is the first time the problem of PRADD 
is investigated, which enriches the research on palmprint recognition. Second, a robust method to 
calculate the palm width is proposed, which can be effectively used for scale normalization of 
palmprints. Third, we evaluate the recognition performance for PRADD of three different methods, 
i.e., subspace learning method, correlation method and orientation coding based method, respectively. 
Lastly, we create the first PRADD image database.  

The rest of this paper is organized as follows: Section 2 describes the image collection and the 
preprocessing algorithm. Section 3 provides a brief review of some recognition methods. Section 4 
reports the experimental results, and Section 5 concludes the whole paper.  
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2. Palmprint Image Collection and Preprocessing 

In this paper, three popular consumer electronics products including one digital camera and two 
smart-phones were used to collect palmprint images. As shown in Figure 1, they are the Canon IXUS 
950 IS (C950) digital camera, and the Motorola ME525 (M525) and Nokia 5800 XpressMusic 
(N5800) smart-phones, respectively. The C950 captures images using a CCD sensor with 800 million 
pixels while the M525 and N5800 capture images using CMOS sensors with 500 and 300 million 
pixels, respectively.  

Figure 1. Three devices used for PRADD palmprint image collection: (a) the Canon IXUS 
950 IS (C950) digital camera; (b) the Motorola ME525 (M525) smart-phone; (c) the Nokia 
5800 XpressMusic (N5800) smart-phone. 

 
 

(a) (b) (c) 

The scenes of non-contact image acquisition are illustrated in Figure 2. During image acquisition, 
the hand with the fingers separated was placed above a table. In order to facilitate image segmentation, 
the table was covered by a black cloth. Meanwhile, the palmprint images were collected under indoor 
and daylight conditions. 

Figure 2. The scenes of non-contact palmprint image acquisition in this work. 

  

The sizes of raw images captured by the C950, M525 and N5800 are 3,264 × 2,448, 2,592 × 1,936, 
and 2,048 × 1,536 pixels, respectively, which are too large to be processed fast. Therefore, the raw 
images were resized into smaller ones, whose sizes are 816 × 612, 778 × 581, and 816 × 612 pixels, 
respectively. At the same time, we converted the images from color space to gray space. Figure 3 
shows three palmprint images and their corresponding Regions of Interest (ROIs) captured by the three 
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different devices from a same palm. It can be seen that the quality of images captured by the C950 is 
the best, and it seems that the quality of images captured by M525 is a little better than that of the 
N5800 according to our observations on the whole database.  

Figure 3. Three palmprint images and corresponding ROI images captured from a same 
palm by three devices: (a) the palmprint images and ROI images captured by the C950 
camera; (b) the palmprint images and ROI images captured by the M525 smart-phone;  
(c) the palmprint images and ROI images captured by the N5800 smart-phone. 

  
(a) 

  
(b) 

  
(c) 

Using the three devices introduced above, we created a PRADD image database named Chinese 
Academy of Science—HeFei Institutes of Physical Science (CASHF) image database. The CASHF 
database contains 12,000 grayscale palmprint images captured from 200 hands corresponding to 100 
individuals. The volunteers are staff or students of the HeFei Institutes of Physical Science, and are all 
Chinese. Thirty one of them are female, and most of them are 22~35 years old. During the image 
acquisition, there were no special requests concerning volunteers’ rings and nails. That is, the 
volunteer can decide whether to wear a ring or trim the nails by him/herself. 
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Since three devices were used for data collection, the CASHF database consists of three 
sub-databases, named as N5800, M525 and C950, respectively, according to the names of the 
capturing devices. Each sub-database contains 20 samples captured from each of the hands in two 
sessions, where 10 samples were captured in the first session and the second session, respectively. That 
is, each device collected 4,000 palmprint images in total. Consequently, the total number of palmprint 
images captured by three devices is 12,000. Obviously, the total numbers of images captured in the 
first session and the second session are all 6,000 in this database. The average interval between the 
first and the second collection is about ten days. After image acquisition, the next task is to perform 
preprocessing. In our image acquisition, rotation and scale changes between different images captured 
from a same palm are inevitable, caused by the non-contact image acquisition. Thus, several tasks 
should be done in preprocessing stage, i.e., rotation normalization, scale normalization, and  
ROI extraction. 

2.1. Rotation Normalization 

Here, we adopt a classical algorithm to perform rotation normalization [5]. The main steps are 
described as follows: 

Step 1: The gray image (see Figure 4(a)) is converted to a binary image (see Figure 4(b)) 
according to a threshold, which can be obtained by the OTSU algorithm [19].  

Step 2: One point in the right of binary image located at the center of wrist is selected as the 
reference point (see Figure 4(b)).  

Step 3: The radial distance function is calculated. First, the boundary of hand is detected by a 
boundary tracking algorithm. Next, the distances from the reference point to all boundary 
points are calculated to get the radial distance function as shown in Figure 4(c). In this 
function, four minima are detected to obtain four key points (P1, P2, P3, P4) corresponding 
to four gaps between fingers. 

Step 4: In the binary image, a line segment P1P3 is drawn between points P1 and P3 (see  
Figure 4(d)). Then, the binary image is rotated around the middle point of P1P3 to make it 
horizontal. Figure 4f shows the normalized gray image after rotation normalization.  

2.2. Scale Normalization and ROI Extraction 

In the palmprint recognition field, most representative recognition methods are not invariant to scale 
changes [6]. That is, the training and test samples from a same person should have a same scale. 
Otherwise, those representative methods would be invalid. As we have mentioned above, scale 
variance between different images captured from a same palm are inevitable caused by non-contact 
image acquisition. Thus, scale normalization of palmprint should be done before recognition is 
performed. In the previous study of non-contact palmprint recognition, some researchers usually 
performed scale normalization at the vertical direction [14,20]. Here, vertical based scale 
normalization means that all palmprints should have the same palm width in a certain position of the 
palms. Han et al. [20] proposed a method to estimate the palm width in the center point position. 
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Figure 4. Main steps of the rotation normalization algorithm: (a) the gray palmprint image; 
(b) the binary palmprint image and reference point; (c) the radial distance function and 
four key points; (d) drawing a line segment P1P3 can calculate the line’s angle; (e) rotating 
the binary image around the middle point of P1P3 to make it be horizontal; (f) the rotation 
normalized gray palmprint image. 

 
(a)      (b) 

 
(c)       (d) 

 
(e)      (f) 

In Han’s method, the gray hand image is converted to a binary image, and then the center point of 
the binary image is calculated. However, sometimes Han’ method cannot accurately calculate the 
center point position since different hand images may contain different wrist parts. An example is 
given in Figure 5(a). Michael et al. [14] proposed another method to estimate the size of ROI image, in 
which the distance between points P1 and P3 is regarded as the width of the ROI image. However, this 
method is not robust since different hand poses which would lead to changes in the distance between 
points P1 and P3, as shown in Figure 5(b). 
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Figure 5. Two existing methods of calculating the palm width or ROI width, (a) Han’s 
method to estimate the palm width in the position of center point; (b) Michael’s method to 
estimate the size of ROI image using the distance between points P1 and P3. 

 
(a) 

 
(b) 

In this paper, we propose an effective algorithm for scale normalization at the vertical direction. As 
we know, principal lines are the most stable features in palms, and the heart line is near to the point of 
P1 and can be easily detected. Therefore, we try to find a point located in the heart line as the reference 
position to perform scale normalization. Compared with Han’ and Michael’s methods, the advantage 
of our method is that it can calculate the palm width more stably. The main steps of scale 
normalization and ROI extraction are described as follows: 

Step 1: Determine a segment of palm boundary around the start point of the heart line. This task 
can be done using boundary tracking according to the position of P1 as shown in Figure 6. 
In this figure, from the starting point S1, we start to track the bottom boundary toward left 
direction. The tracking will be finished when the last tracking point E1 has the same 
vertical position with P1 (see Figure 6). Usually, there is a long distance between the 
vertical position of P1 and head line. We do not need to detect the head line in the area near 
to the vertical position of P1. Therefore, the tracking is stopped in the certain position on 
the right of P1. The distance between this right position and the vertical position of P1 is 
set to an experiential value in this paper, i.e., 30 pixels, as shown in Figure 7(a). And then, 
a rectangle image R above the segment is extracted (see Figure 7(a)). According our prior 
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knowledge, after rotation normalization, the widths of all palms are between 250 to 400 
pixels since the size of whole hand image is 816 × 612 or 778 × 581. Therefore, the height 
of R is set to a suitable value, which is 100 pixels. 

Figure 6. Determine a segment of palm boundary around the start point of heart line by 
boundary tracking. 

 

Step 2: In the image R, use modified finite Radon transform (MFRAT) [21,22] of size 100 to 
calculate the line energies across the middle line as shown Figure 7(b). The detail of 
MFRAT can be found in literature [21,22]. It can calculate the line energies by comparing 
the pixels’ integration of different lines at the different directions. From Figure 7(b), it can 
be seen that the point of intersection of middle line of R and heart line can be easily 
detected according to the maximum value of line energies (see Figure 7(c)). The detected 
point (red point) will used as reference point to perform scale normalization as shown in 
Figures 7(d,e). 

Step 3: All palmprint images are resized to have the same height in the detected point position.  
In this work, the height of normalized palmprint image is 300 pixels as shown in  
Figure 7(f) since the widths of all palms are between 250 to 400 pixels according our prior 
knowledge. Here, it should be noted that if the original height of the palm is less than  
300 pixels, the width of this palm will be resized to 300 pixels too. 

Step 4:  The middle point of vertical line (blue line) as shown in Figure 7(g) is regarded as the 
center point of palm. According to this center point, however, the ROI sub-images of some 
palms cannot be cropped correctly. An example is illustrated in Figure 8(a). In order to 
better extract ROI sub-image, we move the position of center point toward right direction 
50 pixels, which is regarded as the new center point. According to our observation, 50 
pixels is a suitable value. If this step is performed, all ROI sub-images can be well cropped 
in whole database. An example is illustrated in Figure 8(b).  
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Figure 7. Main steps of the scale normalization algorithm: (a) determine a segment of 
palm boundary around the start point of heart line, and then a rectangle image R above the 
segment is extracted; (b) the rectangle image R; (c) the line energies across the middle line; 
(d) the detected point (red point) in R; (e) the detected point (red point) in the whole 
palmprint image; (f) all palmprint images are resized to have the same height (300 pixels) 
in the detected point position; (g) crop the ROI image. 

the line energies(a)

(b)

(c)

(f) (g)

R

line energies

(d)

(e)

 

Step 5: A square with size of 200 × 200 pixels around the new center point is cropped, which is 
the ROI image. Finally, we resize the ROI image to a small one, whose size is 128 × 128 
pixels. Figure 9 illustrates an example of scale normalization. In this figure, (a) and (d) are 
two palmprint images captured from a same palm. It can be seen that their scales are 
obviously different. Figures 9(b) and (e) are their scale normalized images; (c) and (f) are 
ROI images. From Figure 9, it can be concluded that our scale normalization algorithm is 
reasonable and effective.  
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Figure 8. Crop the ROI sub-image before (a) and after (b) moving the position of center point. 

  

(a) (b) 

Figure 9. An example of scale normalization: (a) and (d) two palmprint images with 
different scales captured from a same palm; (b) and (e) the scale normalized images of (a) 
and (d); the ROI images cropped from (b) and (e). 

 
(a) (b) (c) 

 
(d) (e) (f) 

3. Recognition Methods 

As we have mentioned above, we evaluated the PRADD recognition performances of three 
different methods, i.e., subspace learning method, correlation method and orientation based method, 
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respectively. Several representative methods are exploited, which will be briefly introduced in the 
following part of this section. 

3.1. The Exploited Subspace Learning Methods 

Generally, classical subspace learning methods, which are also called appearance methods or 
subspace analysis methods, seek to find a low-dimensional subspace in a high-dimensional input space 
by linear transformation. This low-dimensional subspace can provide a compact representation or 
extract the most discriminant information of the high-dimensional input data. Principal component 
analysis (PCA) [23] and linear discriminant analysis (LDA) are two typical well known subspace 
learning methods [23]. PCA is the optimal representation of the input data in the sense of the minimum 
reconstruction error, which is completely unsupervised because of not taking the class information of 
the input data into account. In contrast to PCA, LDA takes the class labels into consideration and can 
produce optimal discriminant projections, which maximizes the ratio of the determinant of the 
between-class scatter matrix of the projected samples to the determinant of the within-class scatter 
matrix of the projected samples. It is generally believed that the class information can improve the 
recognition ability. 

In recent years, some important progress has been made in the research on appearance based 
approaches. Among them, three advances should be highlighted. The first one is the kernel method, 
which uses a linear classifier algorithm to solve a non-linear problem by mapping the original 
non-linear observations into a higher-dimensional space [24]. The second one is manifold learning, 
which is based on the idea that the data points are actually samples from a low-dimensional manifold 
that is embedded in a high-dimensional space [24]. Manifold learning algorithms aim to uncover the 
proper parameters in order to find a low-dimensional representation of the data. The last one is matrix 
and tensor embedding [25–29]. Matrix embedding methods can extract feature matrices using a 
straightforward image projection [25,26]. Tensor embedding methods represent the image ensembles by 
a higher-order tensor and extract low-dimensional feature using multilinear algebra methods [27–29].  
As we know, kernel PCA (KPCA) and kernel LDA (KLDA) are kernel based versions of PCA and 
LDA [24], 2DPCA [25] and 2DLDA [26] are matrix based versions of PCA and LDA, and concurrent 
subspaces analysis (CSA) [27,28] and multilinear discriminant analysis (MDA) [29] are tensor based 
versions of PCA and LDA. It should be noted that many subspace learning methods have been 
proposed in recent years. In this paper, due to space limitations, only PCA, LDA and their improved 
versions mentioned above will be used for PRADD, and Euclidian Distance is used as the similarity 
measure for these subspace learning methods. 

3.2. Band-limited Phase-only Correlation Method 

Band-Limited Phase-Only Correlation (BLPOC) is an effective and efficient biometrics method  
proposed for iris recognition by ITO et al. [30], which has been successfully applied to palmprint 
recognition [31]. In this paper, it is also used for PRADD. Firstly, the definition of POC is described as 
follows: consider two N1 × N2 images, f(n1,n2), and g(n1,n2). Let F(k1,k2) and G(k1,k2) denote the 2D 
Discrete Fourier Transforms (DFTs) of the two images. Here, F(k1,k2) is given by: 
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where AF(k1,k2) is amplitude and θF(k1,k2) is phase. G(k1,k2) can be defined in the same way. The 
cross-phase spectrum RFG(k1,k2) is given by: 
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where ),( 21 kkG  is the complex conjugate of G(k1,k2) and θ(k1,k2) denotes the phase difference 
θF(k1,k2)-θG(k1,k2). The POC function rfg(n1,n2) is the 2D Inverse DFT (2D IDFT) of RFG(k1,k2) and is 
given by:  
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From Equations (2) and (3), we can see that original POC exploits all components of the image’s 
2D DFT to generate the out plane. In [30], ITO et al. found that BLPOC can achieve better recognition 
performance by removing the high frequency components and only using the inherent frequency band 
for matching.  

Here we denote the center area of θF(k1,k2) and θG(k1,k2) as θF(k1,k2)BL and θG(k1,k2)BL, whose size is 
J1 × J2. Thus, the BLPOC function is given by: 
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Finally, the 1D vector, rfg(n1,n2)BL, should be converted to 2D array by lexicographic ordering to 
generate the correlation output plane (COP). 

For correlation based methods, three values, i.e., peak, peak-to-correlation energy (PCE), and 
peak-to-sidelobe ratio (PSR) were often adopted as similarity measures [32,33]. As the name suggests, 
peak is the maximum peak value in COP. PCE and PSR are defined by: 

COP

COP

std
meanpeakPCE −= , 

sidelobe

sidelobe

std
meanpeakPSR −=  (5)

where meanCOP is the average of the COP, stdCOP is the standard deviation of the COP, meansidelobe is 
the average of the sidelobe region surrounding the peak (21 × 21 pixels with a 5 × 5 excluded zone 
around the peak), and stdsidelobe is the standard deviation of the sidelobe region values. In our previous 
work [34], we found PSR is a better measure than peak and PCE. Thus, we select PSR as the similarity 
measure in this paper. 

3.3. The Exploited Orientation Coding Based Methods 

In this paper, three classical orientation coding based methods are used for PRADD, which  
are Ordinal Code [12], Competitive Code (CompCode) [35], and Robust Line Orientation Code 
(RLOC) [22], respectively.   
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3.3.1. Ordinal Code  

In Ordinal Code [12], 2D Gaussian filter is exploited for extracting the line energy of every pixel in 
a palmprint. The form of 2D Gaussian filter is given as follows: , , exp  (6)

where  denotes the orientation of 2D Gaussian filter,  and  denote the filter’s horizontal scale 
and vertical scale, respectively. And then the orthogonal line ordinal filter (OF) can be designed  
as follows: , , , , 2  (7)

In [12], three ordinal filters, OF(0), OF( /6) and OF( /3), were exploited to extract the ordinal 
feature. The main steps of feature extraction are presented as follows: 

Step 1: Using OF(0) to filter a preprocessed palmprint image I(x, y) to get filtered image 
OF(0)_image:  0 _image , 0  (8)

where * means convolution processing.  
Step 2: The Ordinal Code (obtained from OF(0)_image) can be gotten according to the sign of 

filtering results:  , 1, if 0 _image , 00, if 0 _image , 0  (9)

Step 3: Repeat Step 1 and 2 using filters OF( /6) and OF( /3). As a result, we get three bit plane 
of Ordinal Code.  

In matching stage, Hamming distance is exploited for the similarity measure. If A is the feature of a 
training sample with the size of M × N, and B is the feature of a test sample with the same size, the 
Hamming distance (D(A,B)) between them is defined as follows: , ∑ ∑ ∑ , ,3  (10)

where  is bitwise exclusive OR and  (or ) is the ith bit plane of A (or B). 
Theoretically speaking, (D(A,B))is between 0 and 1, and the smaller the matching score the greater 

the similarity between A and B. The matching score of a perfect match is 0. 

3.3.2. CompCode 

The basic idea of Competitive Code is to extract the orientation field as features by 2D ellipsoidal 
Gabor filter bank and use angular distance as a matching function [35]. Generally speaking, 2D 
ellipsoidal Gabor filter has the following form:  , , , √2 e ′ ′ e ′ e  (11)
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where ′ cosθ sinθ , y′ sinθ cosθ  is the center of the 
function.  is the radial frequency in radians per unit length and  is the orientation of the Gabor 
functions in radians. k is defined as √2ln2 δ

δ , where  is the half-amplitude bandwidth of the 

frequency response. Based on this Gabor function, a Gabor filter bank with one scale and six directions 
are created: 

.6,,2,1,
6

)1( …=−= kk
k

πθ  (12)

A brief summary of Competitive Code is given below: 

Step 1: Six real parts of Gabor filters , , , with different directions θk are applied to a 
preprocessed palmprint image I (x, y). 

Step 2: The orientation of a local region is obtained by the competitive rule arg , , , ,  (k={1, 2, 3, 4 ,5, 6}) (13)

Two Competitive Codes are compared by their angular distance. The implementation of calculating 
angular distance is also based on Hamming distance.  

3.3.3. Robust Line Orientation Code  

RLOC is another effective orientation based approach, which use the MFRAT to extract  
the orientation feature [21,22]. The MFRAT and RLOC are introduced as follows: denoting  
Zp = {0, 1 ,…, p − 1}, where p is a positive integer, the MFRAT of real function f[x,y] on the finite 
grid Zp

2 is defined as: 

∑
∈

==
kLji

fk jifkMFRATLr
,

],[)(][  
(14)

where Lk denotes the set of points that make up a line on the lattice Zp
2, which means: 

},)(:),{( 00 pkk ZijiiSjjiL ∈+−==  (15)

where (i0,j0) denotes the center point of the lattice Zp
2, and k means the index value corresponding to a 

slope of Sk. That is to say, different k denotes different slopes of Lk. For any given k, the summation 
r[Lk] of only one line, which passes through the center point (i0,j0) of Zp

2, is calculated. Actually, r[Lk] 
is the energy of line Lk. In order to make a correct energy comparison among all lines, lines at different 
directions should have an identical number of pixels. The discussions about the differences between 
finite radon transform (FRAT) and MFRAT can be found in [21]. 

In the MFRAT, if there exist a genuine line which passes through the center point (i0,j0) of Zp
2, we 

can obtain its index value of direction kmin(i0,j0) by the following formula: 

NkLrjik kk
,2,1])[(minarg),( 00min ==  (16)

In this way, the directions of all pixels can be calculated if the center of lattice Z2
p moves over an 

image pixel by pixel. In RLOC, the pixel-to-area distance was exploited for matching. The matching 
score from A to B is defined as follows: 

nmjiBjiABAs
m

i

n

j
×⎟⎟

⎠

⎞
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⎝

⎛
= ∑∑

= =1 1
),(),(),( ∪  (17)
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where “U” is the logical “EQUAL” operation, which means that the value of , B(i,j) will be 1 if ,  and at least one point of , are equal, otherwise it will be 0. And ),( jiB  is defined as 
cross-shaped area around , , which is (B(i − 1,j), B(i + 1, j), B(i, j), B(i,j − 1), B(i,j + 1)). 

In a similar way, the matching score from B to A can also be defined as: 

nmjiAjiBABs
m

i

n

j
×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= ∑∑

= =1 1
),(),(),( ∪  (18)

Finally, the matching score between A and B is defined as:  

)),(),,((),(),( ABsBAsMaxABSBAS ==  (19)

Theoretically speaking, S(A,B) is between 0 and 1, and the larger the matching score the greater the 
similarity between A and B. The matching score of a perfect match is 1. 

4. Experiments 

In this section, intra-sensor and inter-sensor experiments are conducted, respectively. In intra-sensor 
experiments, the training set and the test set are captured from a same device. Obviously, in 
inter-sensor experiments the training set and the test set are captured from different devices. In this 
paper, the nearest neighbor rule (1NN) is used for classification.  

4.1. Experimental Results of Intra-Sensor Recognition  

We firstly conduct the intra-sensor experiments on three sub-databases. In these three 
sub-databases, the 1~3, 4~6, and 7~9 samples captured in the first session are used for training, 
respectively, and the 10 samples from the second session are used for test. That is, for each method, 
the experiment will be conducted three times in one sub-database. 

In the first experiment, we test the recognition performance of subspace learning methods. Only the 
identification experiments are conducted. Identification is a one-to-many comparison against all stored 
templates, which answers the question of “who is this person”? In the identification experiments, the 
statistical value of Best Identification Rate (BIR) is adopted to evaluate the performances of different 
methods. For a subspace learning method, given a number of dimension we can obtain one 
identification rate. When the number of dimension varies, many identification rates can be obtained. 
At last, the highest identification rate will be regarded as the BIR. The BIRs and corresponding 
dimensions of different subspace learning methods conducted three times are listed in Table 1. From 
this Table, it can be seen that the BIRs of subspace learning methods are not satisfactory since the 
highest BIR of all methods is only about 90%. The average BIR of different subspace learning 
methods for intra-sensor recognition are listed in the last row using bold fonts in Table 1. 

In the second experiment, we test the recognition performances of correlation based and orientation 
based methods, i.e., BLPOC, CompCode, Ordinal Code and RLOC, respectively. It should be noted 
that both identification and verification experiments are conducted. Generally, verification is a 
one-to-one comparison against a single stored template, which answers the question of “whether the 
person is whom he claims to be”. In the verification experiments, the statistical value of Equal Error 
Rate (EER) is adopted to evaluate the performance of different methods.  
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Table 1. BIRs (%) and corresponding dimensions (the number in the bracket) of different 
subspace learning methods conducted three times on three sub-databases. 

 PCA LDA KPCA KLDA 2DPCA 2DLDA CSA MDA 

N5800 

85.75 
(250) 

89.75 
(80) 

86.85 
(220) 

88.05 
(170) 

87.30 
(17 × 128)

87.45 
(11 × 128) 

89.95 
(12 × 12) 

88.65 
(10 × 10) 

85.50 
(200) 

89.85 
(70) 

87.15 
(230) 

86.80 
(190) 

87.10 
(14 × 128)

86.00 
(10 × 128) 

90.03 
(11 × 11) 

89.25 
(13 × 13) 

86.00 
(210) 

88.00 
(100) 

86.15 
(250) 

86.75 
(190) 

88.00 
(17 × 128)

87.95 
(11 × 128) 

88.95 
(11 × 128) 

87.85 
(12 × 128)

M525 

83.90 
(200) 

85.95 
(80) 

85.70 
(230) 

87.75 
(190) 

86.60 
(11 × 128) 

86.95 
(10 × 128) 

87.95 
(13 × 13) 

87.40 
(11 × 11) 

85.35 
(240) 

88.10 
(100) 

85.80 
(230) 

85.80 
(180) 

86.85 
(15 × 128)

87.85 
(12 × 128) 

88.55 
(12 × 12) 

88.35 
(10 × 10) 

82.50 
(230) 

83.50 
(80) 

82.85 
(240) 

83.85 
(190) 

86.30 
(13 × 128)

85.15 
(13 × 128) 

84.60 
(13 × 13) 

85.30 
(12 × 12) 

C950 

84.85 
(230) 

88.05 
(100) 

81.50 
(250) 

86.10 
(190) 

88.45 
(14 × 128)

88.70 
(15 × 128) 

90.30 
(13 × 13) 

89.85 
(12 × 12) 

84.25 
(300) 

85.35 
(80) 

82.15 
(250) 

87.50 
(190) 

87.95 
(18 × 128)

85.75 
(15 × 128) 

89.20 
(12 × 12) 

87.35 
(13 × 13) 

86.35 
(300) 

86.75 
(100) 

82.55 
(250) 

84.90 
(170) 

89.55 
(17 × 128)

87.05 
(12 × 128) 

90.05 
(12 × 12) 

88.15 
(12 × 12) 

Average BIR 84.94 87.25 84.5 86.4 87.57 86.98 88.84 88.01 

In the experiments of BLPOC, determining suitable values of J1 and J2 is a key problem that should 
be solved firstly. Since the ROI image of palmprint is a square, and its Fourier spectrum is also a 
square, we let J1 equal to J2. That is to say, the selected center area of the 2D DFT spectrum is also a 
square, whose size is J1 × J1. Furthermore, in order to choose the best J1, we conduct the tests 
exploiting different values of J1. Here, the values of J1 are set to an even number, and the range of J1 is 
{22, 24, ···, 40}.  

In Ordinal Code, two parameters of 2D Gaussian filter,  and , were set to 5 and 1, 
respectively. In Competitive Code, two parameters of 2D ellipsoidal Gabor filter,  and , were set 
to 0.5 and 1.5, respectively. Meanwhile, the size of all filters mentioned above is 40 × 40. In RLOC, 
we use 16 × 16 MFRAT, whose width of the lines, Lk, is 4 pixels, to extract RLOC feature [22]. 

The BIRs and EERs of the BLPOC, CompCode, Ordinal Code, and RLOC methods on three 
sub-databases are listed in Table 2. The average BIR or EER of these methods for intra-sensor 
recognition are also listed in the last row using bold fonts in Table 2. From this table, it can be seen 
that the orientation coding based methods achieve satisfying BIRs, which are near 100%, and the 
recognition performance of BLPOC is obviously worse than that of orientation coding based methods. 
Meanwhile, it can be observed that the BIRs and EERs of orientation coding based methods obtained 
from sub-database C950 is a little better than that of N5800 and M525. It should be noted that the 
recognition performances of CompCode and Ordinal Code is stable on three sub-databases while the 
recognition performance of RLOC is easily influenced by image quality.  
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Table 2. BIRs and EERs of BLPOC and three orientation coding based methods conducted 
three times on three sub-databases (The value of J1 in BLPOC method achieved highest 
BIR or lowest EER is listed in brackets). 

 
BIR (%) EER (%) 

BLPOC Comp 
Code 

Ordinal
Code RLOC BLPOC Comp 

Code 
Ordinal 

Code RLOC

N5800 
93.800 (22) 99.950 100 99.60 2.919 (22) 0.117 0.111 0.420 
93.050 (26) 99.950 99.950 99.700 3.050 (26) 0.220 0.120 0.240 
92.300 (28) 99.750 99.750 99.650 3.690 (26) 0.270 0.220 0.630 

M525 
94.900 (26) 99.950 99.900 99.700 2.699 (22) 0.112 0.168 0.360 
94.700 (26) 99.950 99.900 99.600 2.500 (26) 0.100 0.060 0.400 
92.500 (22) 99.850 99.950 99.550 2.900 (24) 0.220 0.220 0.550 

C950 
95.300 (28) 99.950 99.950 99.900 2.820 (28) 0.068 0.080 0.250 
95.000 (30) 99.900 99.900 99.800 2.940 (30) 0.125 0.170 0.190 
94.950 (28) 99.950 99.900 99.800 2.790 (28) 0.280 0.080 0.200 

Average 
BIR,EER 94.050 99.910 99.910 99.700 2.920 0.168 0.136 0.360 

In order to better illustrate the recognition performances of three orientation coding based methods 
on three sub-databases, their Receiver Operating Characteristic (ROC) curves (the experiments using 
the 1~3 samples of the first session as the training set) are illustrated in Figures 10–12, which plot the 
False Accept Rate (FAR) against the Genuine Accept Rate (GAR).  

Figure 10. The ROC curves of methods Comp Code, Ordinal Code and RLOC on 
sub-database N5800 (using the 1~3 samples of the first session as the training set). 
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Figure 11. The ROC curves of methods Comp Code, Ordinal Code and RLOC on 
sub-database M525 (using the 1~3 samples of the first session as the training set). 

 

Figure 12. The ROC curves of methods Comp Code, Ordinal Code and RLOC on 
sub-database M525 (using the 1~3 samples of the first session as the training set). 
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and the 20 samples from the second session in sub-databases M525 and C950 are used for testing.  
That is to say, the experiment will be conducted three times using different training sets. For 
convenience, this new across-sub-database is named as A_N5800. Consequently, in A_N5800  
the numbers of samples for training and test are 1800 and 4000, respectively. In the similar way,  
two other across-sub-databases, i.e., A_M525, A_C950, are constructed. The details of three 
across-sub-databases, A_N5800, A_M525 and A_C 950 are listed in Table 3.  

Table 3. The details of three across-sub-databases, A_N5800, A_M525 and A_C 950.  

 Training Set Test Set 

A_N5800 
The 1~3, 4~6, and 7~9 samples from 
the first session in sub-database N5800 
are used for training, respectively. 

the 20 samples from the second session 
in sub-databases M525 and C950 

A_M525 
The 1~3, 4~6, and 7~9 samples from 
the first session in sub-database M525 
are used for training, respectively. 

the 20 samples from the second session 
in sub-databases N5800 and C950 

A_C950 
The 1~3, 4~6, and 7~9 samples from 
the first session in sub-database C950 
are used for training, respectively. 

the 20 samples from the second session 
in sub-databases M525 and N5800 

Total number 1,800 4,000 

The BIRs and corresponding dimensions of different subspace learning methods obtained from 
three times experiments for PRADD are listed in Table 4. The average BIR of different subspace 
learning methods for inter-sensor recognition are also listed in the last row using bold fonts in Table 4. 
Compared with Table 1, it can be seen from Table 4 that the BIRs of subspace learning methods are 
poor for inter-sensor recognition. Therefore, it can be concluded that subspace learning methods are 
not suitable for PRADD.  

Table 4. BIRs (%) and corresponding dimensions (the number in the bracket) of different 
subspace learning methods conducted three times on three across-sub-databases. 

 PCA LDA KPCA KLDA 2DPCA 2DLDA CSA MDA 

A_N5800 

70.40 
(210) 

77.48 
(110) 

75.22 
(220) 

84.15 
(190) 

74.90 
(14 × 128) 

73.70 
(9 × 128) 

83.37 
(12 × 12) 

79.20 
(11 × 11) 

72.25 
(290) 

77.08 
(110) 

77.22 
(210) 

83.15 
(190) 

78.10 
(18 × 128) 

67.17 
(10 × 128) 

83.40 
(12 × 12) 

77.02 
(14 × 14) 

71.83 
(240) 

76.58 
(100) 

76 
(220) 

80.95 
(190) 

76.10 
(18 × 128) 

73.82 
(10 × 128) 

81.60 
(13 × 13) 

76.15 
(9 × 9) 

A_M525 

81.93 
(270) 

89.28 
(90) 

84.55 
(250) 

82.20 
(190) 

81.03 
(17 × 128) 

81.70 
(8 × 128) 

89.65 
(12 × 12) 

86.95 
(9 × 9) 

82.15 
(280) 

90.33 
(110) 

84.55 
(300) 

83.45 
(190) 

80.57 
(17 × 128) 

81.03 
(8 × 128) 

90.33 
(13 × 13) 

88.48 
(9 × 9) 
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Table 4. Cont. 

 PCA LDA KPCA KLDA 2DPCA 2DLDA CSA MDA 

 
81.05 
(300) 

88.28 
(100) 

80.73 
(320) 

82.15 
(190) 

77.32 
(18 × 128) 

77.42 
(7 × 128) 

88.45 
(13 × 13) 

84.40 
(13 × 13) 

A_C950 

68.87 
(210) 

71.60 
(170) 

71.03 
(220) 

80.13 
(190) 

74.20 
(12 × 128) 

76.50 
(12 × 128) 

79.30 
(12 × 12) 

78.73 
(12 × 12) 

64.98 
(210) 

65.25 
(110) 

65.15 
(230) 

84.55 
(190) 

71.60 
(18 × 128) 

75.85 
(14 × 128) 

75.25 
(13 × 13) 

76.02 
(12 × 12) 

70.57 
(250) 

72.65 
(200) 

71.00 
(220) 

80.17 
(140) 

75.45 
(17 × 128) 

74.98 
(14 × 128) 

78.00 
(12 × 12) 

79.47 
(12 × 12) 

Average 
BIR 

73.78 78.73 76.16 82.32 76.58 75.8 83.26 80.71 

The BIRs and EERs of the BLPOC, Comp Code, Ordinal Code, and RLOC methods on three 
across-sub-databases are listed in Table 5. Compared with Table 2, it can be seen that the recognition 
performances of these methods decrease a little. In these four methods, the orientation coding based 
methods CompCode and Ordinal Code also achieve promising BIRs and EERS. In other words, the 
recognition performances of CompCode and Ordinal Code are rather stable.  

Table 5. BIRs and EERs of BLPOC and three orientation coding based methods conducted 
three times on three across-sub-databases (The value of J1 in BLPOC method achieved 
highest BIR or lowest EER is listed in brackets). 

 
BIR (%) EER (%) 

BLPOC 
Comp 
Code 

Ordinal
Code 

RLOC BLPOC 
Comp 
Code 

Ordinal
Code 

RLOC 

A_N5800 
93.070 (22) 99.925 99.950 99.550 3.345 (22) 0.220 0.250 0.500 
92.570 (22) 99.850 99.850 99.550 3.270 (24) 0.270 0.220 0.500 
91.350 (24) 99.500 99.425 98.875 3.650 (22) 0.440 0.390 0.875 

A_M525 
93.225 (26) 99.950 99.900 99.725 3.024 (28) 0.200 0.190 0.350 
91.750 (24) 99.825 99.825 99.425 3.070 (28) 0.270 0.300 0.520 
90.975 (22) 99.450 99.550 98.970 3.470 (28) 0.520 0.510 0.900 

A_C950 
92.470 (24) 99.625 99.570 99.000 3.848 (28) 0.580 0.600 0.960 
92.550 (26) 99.525 99.600 98.925 3.650 (28) 0.480 0.550 0.970 
92.500 (26) 99.800 99.925 99.225 3.300 (28) 0.400 0.330 0.600 

Average BIR,EER 92.270 99.710 99.730 99.240 3.400 0.375 0.371 0.686 

In Table 5, in the first and second experiment, an interesting phenomenon is that the recognition 
performances of four methods on across-sub-database A_C950 are obviously worse than that of on 
A_N5800 and A_M525. However, in the third experiment, the situation becomes reversed. This 
phenomenon may be caused by the preprocessing method or the hand poses during image acquisition. 
For example, several samples within the first six samples in the C950 database may be not well 
cropped, or they have obvious affine transformations caused by different hand poses. Thus, they 
cannot well match with test samples captured by smart phones. 
  



Sensors 2012, 12 7959 
 

Figure 13. The ROC curves of methods Comp Code, Ordinal Code and RLOC on 
across-sub-database A_N5800 (using the 1~3 samples of the first session as the training set). 

 

Figure 14. The ROC curves of methods Comp Code, Ordinal Code and RLOC on 
across-sub-database A_M525 (using the 1~3 samples of the first session as the training set). 
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Figures 13–15, in which it can be seen that the method of CompCode also achieves the best 
recognition performance for PRADD. 

Figure 15. The ROC curves of methods Comp Code, Ordinal Code and RLOC on 
across-sub-database A_C950 (using the 1~3 samples of the first session as the training set). 

 

4.3. Performance Comparisons between Intra-Sensor and Inter-Sensor Recognition 

In this section, the performance comparisons between intra-sensor and inter-sensor recognition  
are illustrated. 

Figure 16 shows the average BIR comparisons of different subspace learning methods between 
intra-sensor recognition and inter-sensor recognition. The average BIR of different subspace leaning 
methods for intra-sensor recognition is in the range 85%~89%, while the BIR for inter-sensor 
recognition is in the range 74%~83%, which are poor recognition performance.  

Figure 16. The average BIR comparisons of different subspace learning methods between 
intra-sensor recognition and inter-sensor recognition. 
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Figures 17 and 18 show the average BIR and EER comparisons of BLPOC method and three 
orientation coding based methods between intra-sensor recognition and inter-sensor recognition. It can 
be seen that the performance of orientation coding based methods are far better than that of BLPOC.  

Figure 17. The average BIR comparisons of BLPOC method and three orientation coding 
based methods between intra-sensor recognition and inter-sensor recognition. 

 

Figure 18. The average EER comparisons of BLPOC method and three orientation coding 
based methods between intra-sensor recognition and inter-sensor recognition. 
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wrinkles are clear, but small wrinkles are unclear. Due to a large filter size, CompCode and Ordinal 
Code can extract robust features located in principal lines and large wrinkles from images captured by 
different devices, and the features located in small wrinkles will be neglected. On the contrary, in 
RLOC, MFRAT with size of 16 × 16 is used for feature extraction, which is sensitive to changes of 
small wrinkles. From above analysis, it is not strange that why CompCode and Ordinal Code achieve 
good performance for PRADD while RLOC cannot.  

5. Conclusions 

In this paper, we investigated the problem of Palmprint Recognition Across Different Devices 
(PRADD). It should be noted that it is the first time this problem has been studied in the palmprint 
recognition field. In order to conduct this research, we created a PRADD image database containing 
12,000 grayscale captured from 100 subjects using three devices, i.e., one digital camera and two 
smart-phones. Using this database, we evaluate the recognition performances of three different 
methods, i.e., subspace learning method, correlation method and orientation coding based method, 
respectively. According to experiments results, several meaningful conclusions can be obtained:  
(1) Three popular consumer electronics products including one digital camera and two smart-phones 
were used to create palmprint image databases, and good recognition performance was obtained on 
these databases. Therefore, it can be concluded that these consumer electronics products are suitable 
for use in the technique of palmprint recognition. (2) The proposed scale normalization algorithm for 
PRADD is reasonable and effective. (3) On three across-sub-databases, orientation coding based 
methods, especially CompCode and Ordinal Code achieve promising recognition performance for 
PRADD. That is to say, these two methods are suitable for PRADD. (4) Since promising recognition 
performances are obtained for PRADD, it can be concluded that palmprints are a good human trait, 
which can be used across different capture devices. In our future work, we will try to exploit other 
strategies to further improve the recognition performance of PRADD. For example, we will develop 
multi-feature based methods to achieve better performance for PRADD. 
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