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a b s t r a c t

Original Local Binary Pattern (LBP) descriptor has two obvious demerits, i.e., it is sensitive to noise, and

sometimes it tends to characterize different structural patterns with the same binary code which will

reduce its discriminability inevitably. In order to overcome these two demerits, this paper proposes a

robust framework of LBP, named Completed Robust Local Binary Pattern (CRLBP), in which the value of

value, average local gray level is more robust to noise and illumination variants. To make CRLBP more

robust and stable, Weighted Local Gray Level (WLG) is introduced to take place of the traditional gray value

of the center pixel. The experimental results obtained from four representative texture databases show that

the proposed method is robust to noise and can achieve impressive classification accuracy.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Texture classification plays an important role in computer vision
and image processing. In the past decades, numerous algorithms for
texture feature extraction have been proposed, many of which focus
on extracting texture features that are robust to noises, rotation and
illumination variants [1]. Davis [2] exploited polarograms and
generalized co-occurrence matrices to obtain rotation invariant
statistical features. Duvernoy [3] proposed Fourier descriptors to
extract texture feature on the spectrum domain. Goyal et al. [4]
proposed a method by using texel property histogram. Eichmann
and Kasparis [5] presented texture descriptors based on line
structures extracted by Hough transform. Kashyap and Khotanzad
[6] developed a circular simultaneous autoregressive (CSAR) model
for rotation invariant texture classification. Cohen et al. [7] char-
acterized texture as Gaussian Markov random fields and used the
maximum likelihood to estimate rotation angles. Chen and Kundu
[8] addressed rotation invariant by using multichannel sub-bands
decomposition and hidden Markov model (HMM). Porter and
Canagarajah [9] exploited the wavelet transform for texture classi-
fication by using the Daubechies four-tap wavelet filter coefficients.
Recently, Varma and Zisserman [19,21,22] proposed to cluster a
rotation invariant texton dictionary from a training set, and then
form the textural histogram based on these textons. Later, Xu et al.
[23–25] presented scale invariant texture classification methods by
using a multi-fractal spectrum (MFS).

In [10], Ojala et al. proposed to use the Local Binary Pattern (LBP)
for rotation invariant texture classification. As shown in Fig. 1, LBP
ll rights reserved.
code is computed by comparing a pixel with its neighbors. After the
LBP code of each pixel in the image is defined, a histogram will be
built to represent the texture image. LBP is a simple yet efficient
operator to describe local texture, and has been proven to be
invariant to monotonic gray scale transformations.

Since Ojala’s work, a lot of variants of LBP have been proposed.
For example, Heikkila et al. [11] proposed center-symmetric LBP
(CS-LBP) by comparing center-symmetric pairs of pixels instead of
comparing neighbors with central pixels. Liao et al. [12] presented
Dominant LBP (DLBP), in which dominant patterns were experi-
mentally chosen from all the patterns. Tan and Triggs [13] proposed
Local Ternary Pattern (LTP), which extends original LBP to 3-valued
codes. Guo et al. [14] proposed completed LBP (CLBP) by combining
the conventional LBP with the measures of local intensity difference
and central gray level. Recently, Khellah [15] presented a new
method for texture classification, which combines Dominant Neigh-
borhood Structure (DNS) and traditional LBP.

Although LBP and its variants have achieved impressive classifi-
cation results on representative texture databases, there still remain
some potential flaws of LBP. For example, LBP is sensitive to noise,
and often classifies many different patterns into a same class.
This paper attempts to solve these potential difficulties by proposing
a robust framework of LBP, named Completed Robust Local Binary
Pattern (CRLBP). In CRLBP, the value of each center pixel in a 3�3
local area is replaced by its average local gray level. Compared to
gray value, average local gray level is more robust to noise and
illumination variants. Experimental results illustrate that CRLBP
achieves higher classification rates than other variants of LBP, and
is insensitive to noise and illumination variants.

The rest of this paper is organized as follows: Section 2 briefly
introduces two main flaws of LBP andtwo improved versions of
LBP, i.e., LTP and CLBP. Section 3 presents the framework of
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CRLBP. Experimental results are reported in Sections 4 and
Section 5 concludes the whole paper.
2. Related work

As we have mentioned above, the original LBP descriptor has
some demerits. For example, LBP is sensitive to noise, and some-
times it tends to characterize different structural patterns with
the same binary code, which will reduce its discriminability
inevitably. Recently, in order to improve the original LBP, several
new improved versions of LBP have been proposed including
Local Ternary Pattern (LTP) [13] and Completed Local Binary
Pattern (CLBP) [14]. In this section, we will briefly review two
demerits of LBP and its two improved versions, i.e., LTP and CLBP.

2.1. Brief review of local ternary pattern (LTP)

Because the gray value of the central pixel is directly used as
threshold, LBP is sensitive to noise, especially in the near-uniform
image regions. As illustrated in Fig. 2, we can see that a little
change of the central pixel (75–70) greatly affects the LBP code.

Aiming at this demerit, Tan and Triggs [13] extended original
LBP to 3-valued LTP. The construction of LTP descriptor can be
Fig. 1. Illustration of LBP process.

Fig. 2. An example that LBP is sensitive to noise.

Fig. 3. Illustration of
described by the following formula:

LTPP,R ¼
XP�1

p ¼ 0

s gp�gc
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where gc represents the gray value of the center pixel and
gp(p¼0,y,P�1) denotes the gray value of the neighbor pixel on a
circle of radius R, P is the total number of the neighbors, and t is a
threshold specified by user. As being illustrated in Fig. 3, conven-
tional 2-valued (0, 1) LBP code is extended to 3-valued (�1, 0, 1)
ternary code by using the threshold t. Then the upper pattern and
lower pattern are coded, respectively. LTP codes are more robust to
noise, but no longer strictly invariant to monotonic gray scale
transformation since threshold t is specified by user.

2.2. Brief review of Completed LBP (CLBP)

Another demerit of LBP is that many different structural
patterns may have the same LBP code. As shown in Fig. 4, pattern
(a) and (b) have the same LBP code, but it is hard to say they have
similar local structure.

In order to enhance the discriminative capability of the local
structure, Guo et al. [14] proposed the method of CLBP. In CLBP,
the image local differences are decomposed into two comple-
mentary components, i.e., the signs (sp) and the magnitudes (mp),
respectively

sp ¼ sðgp�gcÞ, mp9gp�gc9 ð2Þ

where gp, gc and s(x) are defined as in Eq. (1). Two operators named
CLBP-Sign (CLBP_S) and CLBP-Magnitude (CLBP_M) are proposed to
LTP (P¼8, R¼1).

Fig. 4. An example that LBP characterize different structural patterns with the

same binary code.



Fig. 5. Different patterns may have the same CLBP code.
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code them, where CLBP_S is equivalent to the conventional LBP, and
CLBP_M measures the local variance of magnitude. The CLBP_M can
be defined as follows:

CLBP_MP,R ¼
XP�1

p ¼ 0

s mp�c
� �

2p, sðxÞ ¼
1, xZ0

0, xo0

(
ð3Þ

where threshold c is set as the mean value of mp of the whole image.
Guo et al. observed that the center pixel also has discriminative
information. Thus, they defined an operator named CLBP -Center
(CLBP_C) to extract the local central information as follows:

CLBP_CP,R ¼ s gc�cI

� �
ð4Þ

where threshold cI is set as the average gray level of the whole
image. By combining the three operators of CLBP_S, CLBP_M and
CLBP_C, denoted as CLBP_S/M/C, significant improvement is made
for differentiating the confusing patterns.

Although CLBP solves some confusion of different patterns, not
all of these patterns can be differentiated perfectly. Fig. 5
illustrates an example that two patterns have the same signs
code and magnitudes code (threshold c¼20), but their local
structures seem different to each other. Besides, it is obviously
that CLBP is sensitive to noise since the value of a pixel is still
used as a threshold directly.
3. Completed robust local binary pattern (CRLBP)

In order to solve the aforementioned difficulties, in this section,
we propose a robust framework of LBP which inherits the merits of
LTP and CLBP, but can overcome their flaws.

3.1. Robust local binary pattern (RLBP)

Aiming at finding a threshold which is insensitive to noise and
invariant to monotonic gray scale transformation, we define the
Average Local Gray Level (ALG) as follows:

ALG¼

P8
i ¼ 1 giþg

9
ð5Þ

where g represents the gray value of the center pixel and gi(i¼0,y,8)
denotes the gray value of the neighbor pixel. ALG represents the
average gray level of local texture, which is obviously more robust to
noise than the gray value of the central pixel. Then the LBP process is
applied by using ALG as the threshold instead of the gray value,
named Robust Local Binary Pattern (RLBP). As a result, we can define
RLBP as follows:

RLBPP,R ¼
XP�1

p ¼ 0

sðgp�ALGcÞ2
p
¼
XP�1

p ¼ 0

s gp�

P8
i ¼ 1 gciþgc

9

 !
2p

ð6Þ

where gc represents the gray value of the center pixel and
gp(p¼0,y,P�1) denotes the gray value of the neighbor pixel on
a circle of radius R, P is the total number of the neighbors, and gci
(i¼0,y,8) denotes the gray value of the neighbor pixel of gc. It is
obviously that RLBP is insensitive to noise since average local gray
level of pixel is used as a threshold. Besides, two different
patterns with the same LBP code may have different RLBP code
because that the neighbors of each neighbor pixel are also
considered. Thus RLBP can overcome the aforementioned two
demerits of original LBP.

ALG ignores the specific value of an individual pixel. While
sometimes the specific information of the central pixel is needed.
To make a balance between anti-noise and information of individual
pixel, we define a Weighted Local Gray Level (WLG) as follows:

WLG¼

P8
i ¼ 1 giþag

8þa ð7Þ

where g and gi are defined as in Eq. (5), a is a parameter set by user.
It should be notice that WLG is equivalent to the conventional ALG if
a is set as 1. Now the RLBP can be calculated as follows:

RLBPP,R ¼
XP�1

p ¼ 0

sðgp�WLGcÞ2
p
¼
XP�1

p ¼ 0

s gp�

P8
i ¼ 1 gciþagc

8þa

 !
2p

ð8Þ

where gp, gc, gci are defined as in Eq. (6), a is the parameter of WLG.
A set of experiments were carried out on a large texture database to
select the optimal parameter a in this paper. The images in the
CUReT database were captured under significantly illumination
changes, viewpoint variants, and scales transformations. Thus, the
experimental setup was conducted on the CUReT database and
noisy CUReT database (SNR¼5), which will be discussed later in
Section 4.3. The response functions of different parameter a on
CUReT database and noisy CUReT database are illustrated in Fig. 6.
As illustrated in Fig. 6(a), RLBP performs better when a is set as 8, 9,
10 on normal database. Fig. 6(b) shows that RLBP performs best in
anti-noise when a is set as 1, and RLBP will be more sensitive to
noise if a is set larger than 8. Thus, in our approach, a is set as 1 or
8 according to experimental results. In other words, RLBP (a¼1) is
more insensitive to noise than RLBP (a¼8), while RLBP (a¼8)
performs more stably under complex illumination and viewpoint
variant conditions, since it extracts the gray level information of
both local neighbor set and individual pixel.

3.2. Completed robust local binary pattern (CRLBP)

For differentiating the confusing patterns of LBP, RLBP inherits
the effective framework of CLBP. The magnitude mp is usually
defined as follows:

mp ¼ 9WLGp�WLGc9¼

P8
i ¼ 1 gpiþagp

8þa
�

P8
i ¼ 1 gciþagc

8þa

�����
����� ð9Þ

where gp, gc, gci are defined as in Eq. (6), gpi (i¼0,y,8) denotes the
gray value of the neighbor pixel of gp, and a is the parameter of
WLG. RLBP-Magnitude (RLBP_M) measures the local variance of
WLG. As a result, we define RLBP_M as follows:

RLBP_MP,R ¼
XP�1

p ¼ 0

s mp�c
� �

2p
ð10Þ

where threshold c is set as the mean value of mp of the whole
image. The center pixel, which expresses the image central gray
level, also has discriminative information. Thus, we also defined
an operator named RLBP-Center (RLBP_C) to extract the local
central information as follows:

RLBP_CP,R ¼ s WLGc�cIð Þ ð11Þ

where threshold cI is set as the average local gray level of the whole
image. As in [14], we use the same way to combine the three
operators of RLBP, RLBP_M and RLBP_C, denoted as CRLBP.
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Fig. 6. Texture classification rates under different values of a (0–20). (a) The

classification rates on CUReT database with R¼1, P¼8, and 46 training samples

and (b) the classification rates on noisy CUReT database with R¼1, P¼8, SNR¼5,

and 46 training samples.
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3.3. Dissimilarity measure

Several measures have been proposed for discriminating the
dissimilarity between two histograms. In this paper, we utilize
the w2 statistics to address the problem. If H¼{hi} and K¼{ki}
(i¼1, 2y B) denote two histograms, then the w2 statistics can be
calculated as follows:

dw2 H,Kð Þ ¼
XB

i ¼ 1

hi�kið Þ
2

hiþki
ð12Þ

In this paper, assuming that all the methods used the nearest
neighborhood classifier for classification.
4. Experimental results

To evaluate the effectiveness of the proposed method, we
carried out a series of experiments on four representative texture
databases, i.e., the Outex database [16], the UIUC database [17],
the CUReT database [18], and the XU_HR database [26]. The first
set of experiments is conducted on Outex database and follows
the experimental setup in [14]. The second set of experiments is
performed on the UIUC database. For experiments conducted on
noisy images, each texture image was corrupted by additive
Gaussian noise with zero mean and standard deviation that was
determined according to the corresponding Signal-to-Noise Ratios
(SNR) value. The third set of experiments is conducted on the
CUReT database. The experimental setup is similar to the one
presented in [14,20]. The last experiment is performed on the XU
High Resolution database.

4.1. Experimental results on Outex database

When conducting the experiments on the Outex database (see
Fig. 7), we used the Outex test suits Outex_TC_0010 (TC10) and
Outex_TC_0012 (TC12), where TC10 and TC12 contain 24 classes of
texture images captured under three illuminations (‘‘inca’’, ‘‘tl84’’ and
‘‘horizon’’) and nine rotation angles (01, 51, 101, 151, 301, 451, 601, 751,
and 901). There are twenty 128�128 images for each rotation angle
under a given illumination condition. The 24�20 images of illumi-
nation ‘‘inca’’ and rotation angle 01 were adopted as the training data.
For TC10 dataset the other eight rotation angles with illumination
‘‘inca’’ are used for test. For TC12 dataset, all the 24�20�9 samples
m the Outex database.
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captured under illumination ‘‘tl84’’ or ‘‘horizon’’ were used as the
test data.

For the experiments on the Outex database, the performance of
our approach is compared with several other methods including
original LBP [10], LTP [13], DLBP [12], CLBP [14], and DNSþLBP [15].
Table 1 lists the experimental results of different methods, from
which we could make the following findings. First, except for the
Table 1
Classification rate (%) on Outex TC10 and TC12 datasets.

R¼1, P¼8 R¼2, P¼16

TC10 TC12 Average TC10 TC1

t184 Horizon tl84

LBP 84.81 65.46 63.68 71.31 89.40 82.2

LTP 93.39 73.94 72.89 80.07 96.20 87.8

CLBP_M 81.74 59.30 62.77 67.93 93.67 73.7

CLBP_S/M/C 96.56 90.30 92.29 93.05 98.72 93.5

RLBP (a¼8) 83.96 73.17 63.82 73.65 89.27 84.5

RLBP_M (a¼8) 85.26 66.41 66.16 72.61 93.88 76.3

CRLBP (a¼8) 97.55 91.94 92.45 93.98 98.59 95.8

RLBP (a¼1) 84.43 80.74 76.90 80.69 92.34 88.0

RLBP_M (a¼1) 85.23 66.76 67.62 73.20 94.58 78.4

CRLBP (a¼1) 96.54 91.16 92.06 93.25 98.85 96.6
DNSþLBP[15] – – – – 98.90 93.2

DLBP þNGF[12] TC10:99.1 TC12:‘tl84’93.2 and ‘horizon’90.4

Fig. 8. 25 texture images fr

Table 2
Classification rate (%) on UIUC database.

R¼1, P¼8 R¼2, P¼16

20 15 10 5 20 1

LBP 54.65 52.94 47.14 39.72 61.32 5

CLBP_S/M/C 87.64 85.70 82.65 75.05 91.04 8

RLBP (a¼8) 61.68 59.26 53.95 44.98 65.99 6

CRLBP (a¼8) 88.01 86.62 82.97 76.01 91.99 9

RLBP (a¼1) 65.41 63.18 58.71 51.38 68.06 6

CRLBP (a¼1) 86.91 85.67 82.20 73.95 92.92 9
experiment (R¼2, P¼16) on TC10 dataset, CRLBP performs much
better than other methods. It should be noticed that CRLBP (a¼8)
achieves better results under illumination ‘‘tl84’’ and ‘‘horizon’’ than
other methods, that demonstrates CRLBP (a¼8) is more robust to
illumination variations. Second, similar conclusion can be made to
CRLBP (a¼1). CRLBP (a¼1) performs better than other variants
of LBP on average, especially under different illuminations. Finally,
R¼3, P¼24

2 Aver-age TC10 TC12 Average

Horizon tl84 Horizon

6 75.20 82.28 95.07 85.04 80.78 86.96

5 83.38 89.14 97.71 90.74 85.65 91.37
9 72.40 79.95 95.52 81.18 78.65 85.11

4 93.91 95.39 98.93 95.32 94.53 96.26

4 79.93 84.58 94.30 84.58 82.52 87.13

9 78.63 82.97 96.12 80.07 81.39 85.86

8 96.41 96.96 99.35 96.83 96.16 97.45

8 86.02 88.81 92.32 83.98 83.36 86.55

5 81.74 84.92 96.97 80.72 82.18 86.62

7 96.97 97.50 99.48 97.57 97.34 98.13
2 92.13 94.75 99.27 94.40 92.85 95.51

om the UIUC database.

R¼3, P¼24

5 10 5 20 15 10 5

6.42 51.16 42.03 64.67 60.05 54.25 44.59

9.42 86.29 78.57 91.19 89.21 85.95 78.05

2.46 56.73 48.19 68.09 64.83 59.84 50.28

0.41 88.04 81.49 92.83 90.55 88.02 80.54

5.06 60.37 51.25 72.79 69.54 64.03 53.04

1.82 88.15 81.98 93.31 92.03 89.47 81.90
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compared CRLBP (a¼8) with CRLBP (a¼1), the former one performs
best when radius is 1, and the latter one achieves the highest
classification rates at other radius. In one word, CRLBP can get higher
classification rates than other methods and it is more insensitive to
illumination variations.

4.2. Experimental results on UIUC database

The UIUC texture database (see Fig. 8) includes 25 classes and
40 images in each class. The resolution of each image is 640�480.
The database contains materials imaged under significant view-
point variations. To assess classification performance, N training
images are randomly chosen from each class while the remaining
40-N images are used as the test set. The average accuracy over
100 randomly splits are listed in Table 2.

Similar findings to those in section 4.1 can be found in Table 2.
First, CRLBP (a¼8) achieves better results than CLBP at any condition.
Table 3
Classification rate (%) on UIUC database with additive Gaussian noise of different

Signal-To-Noise Ratios (SNR).

(R¼3, R¼24 and N¼20) SNR 100 SNR 30 SNR 15 SNR 10 SNR 5

CLBP 90.74 90.38 87.56 81.64 67.54

CRLBP (a¼8) 92.51 92.28 91.11 85.90 77.16

CRLBP (a¼1) 93.49 93.08 92.74 88.57 79.20

Fig. 9. 61 texture images fro

Table 4
Classification rate (%) on CUReT database.

R¼1, P¼8 R¼2, P¼16

46 23 12 6 46 2

LBP 79.93 74.40 67.62 58.05 76.19 7

CLBP_S/M/C 95.19 91.20 83.81 73.44 95.35 9

RLBP (a¼8) 74.13 68.75 62.15 54.09 76.19 7

CRLBP (a¼8) 95.39 91.33 85.40 76.56 95.88 9
RLBP (a¼1) 71.63 66.24 60.49 53.44 72.10 6

CRLBP (a¼1) 94.55 89.47 82.72 73.22 94.78 9

DNSþLBP[15] – – – – 95.00 –
Second, CRLBP (a¼1) performs much better than CLBP when the
radius is larger than one, but it performs worse than CLBP at (R¼1,
P¼8). Finally, compared CRLBP (a¼8) with CRLBP (a¼1), the former
one performs best at (P¼1, R¼8), and the latter one achieves the
highest classification rates at other radius.

For experiments conducted on noisy UIUC texture images, 20
training images are randomly chosen from each class. The partition
is also implemented over 100 times independently with (P¼3,
R¼24). The average results on the noisy images are listed in Table 3.

From Table 3, we can easily found that CRLBP (a¼1) is most
robust to noise. CRLBP (a¼1) performs 2.75% higher than CLBP
when SNR value is 100, and it achieves 11.66% higher than CLBP
when SNR value is 5. As analyzed in Section 3.1, same conclusion
can be made from Tables 2 and 3. CRLBP (a¼1) and CRLBP (a¼8)
perform better than CLBP, and CRLBP (a¼1) is most insensitive
to noise.
4.3. Experimental results on CUReT database

The CUReT database includes 61 classes of textures captured
at different viewpoints and illumination orientations (see Fig. 9).
In each class, 92 images are selected from the images shot from a
viewing angle of less than 601. As in [14,19], N images were
randomly chosen as training samples from each class. The remaining
92-N images were used as test samples. The average classification
rates over 100 random splits are listed in Table 4.
m the CUReT database.

R¼3, P¼24

3 12 6 46 23 12 6

0.39 64.27 56.30 79.47 73.72 67.62 59.81

1.24 84.66 75.41 95.38 91.77 85.01 76.16

0.39 64.27 56.30 79.47 73.72 67.62 59.81

1.85 86.44 77.79 96.27 91.83 86.06 78.43
6.35 60.26 53.13 74.05 68.18 61.98 54.50

1.10 85.47 76.39 95.35 90.73 85.05 76.34

– – 94.52 – – –
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We could get the following observation from Table 4. First,
CRLBP (a¼8) achieves higher classification rates than other
methods, especially when the training samples are less than 23.
Second, CRLBP (a¼1) performs worse than CLBP on this database
when the training samples are enough. When the training
samples are less than 23 and radius are larger than 1, CRLBP
(a¼1) perform slightly better than CLBP. Thus, CRLBP (a¼8) is
more stable than CRLBP (a¼1) since it extracts both local gray
level information and the specific information of individual pixel.

For experiments conducted on noisy CUReT texture images, 46
images are randomly chosen from each class as train samples.
The partition is also implemented over 100 times independently
with (P¼3, R¼24). The average results on the noisy images are
listed in Table 5.

When it is come to noisy images, we can get the following finding
from Table 5. First, CRLBP (a¼8) still achieve higher classification
accuracy than CLBP. Second, although CRLBP (a¼1) performs worse
than CLBP on normal images, it get much better results on noisy
datasets.
Table 5
Classification rate (%) on CUReT database with additive Gaussian noise of different

Signal-To-Noise Ratios (SNR).

(R¼3, R¼24 and N¼46) SNR 100 SNR 30 SNR 15 SNR 10 SNR 5

CLBP 95.51 95.87 87.23 72.77 51.35

CRLBP (a¼8) 96.34 96.18 92.30 82.88 64.97

CRLBP (a¼1) 96.06 95.90 93.56 85.58 69.67

Fig. 10. 25 texture images fr

Table 6
Classification rate (%) on XU_HR database.

R¼1, P¼8 R¼2, P¼16

20 15 10 5 20 1

CLBP_S/M/C 96.20 95.54 94.39 91.35 97.34 9

CRLBP (a¼8) 95.32 93.79 91.98 86.18 98.37 9
CRLBP (a¼1) 96.31 95.63 94.45 89.81 98.06 9
4.4. Experimental results on XU_HR database

The XU High Resolution texture database (see Fig. 10) includes
25 classes and 40 images in each class. The resolution of each
image is 1280�960. The images in this database are with very
large resolution variations. To assess classification performance, N

training images are randomly chosen from each class while the
remaining 40-N images are used as the test set. The average
accuracy over 100 randomly splits are listed in Table 6.

We could make the following findings from Table 6. First,
CRLBP (a¼8) performs best when the radius is larger than 1.
Second, CRLBP (a¼1) achieves higher classification rates when
the radius is 1. Last, it also should be notice that CLBP performs
better when R¼1, P¼8, 5 training samples. But CRLBP is better
than CLBP at any other conditions.
4.5. Compared with recent non-LBP methods

The LBP and its variants use specified structural patterns to form
texture histogram. Instead of using the fixed texture patterns, Verma
and Zisserman [21] proposed to cluster the textons by using the max
responses of several filters (VZ_MR8). Later, they [22] presented
a new texton dictionary clustered by using the image local patch.
In [19], they proposed to find a dominant orientation of the local
patch to address the rotation invariant issue (VZ_Joint). In these
aforementioned works, the spatial information of how pixels are
distributed is lost. Aiming at this demerit of the global texture
descriptors, Xu et al. [23] proposed a scale invariant texture feature
om the XU_HR database.

R¼3, P¼24

5 10 5 20 15 10 5

6.73 95.38 91.10 97.73 96.65 95.17 91.59

7.30 96.41 92.73 98.22 97.51 96.51 92.91
7.27 96.11 92.89 98.12 97.34 95.82 92.34



Table 7
Classification rates (%) of different methods on three databases.

Outex database CUReT database UIUC database

TC10 ‘‘tl84’’ ‘‘horizon’’ Average 46 23 12 6 20 15 10 5

CRLBP (a¼1) 99.48 97.57 97.34 98.13 95.35 90.73 85.05 76.34 93.31 92.03 89.47 81.90

CRLBP (a¼8) 99.35 96.83 96.16 97.45 96.27 91.83 86.06 78.43 92.83 90.55 88.02 80.54

VZ_Joint 98.51 97.45 98.35 98.10 96.51 93.42 88.22 79.14 93.27 92.00 88.39 80.87

VZ_MR8 94.06 92.61 93.31 93.32 97.86 95.54 91.28 83.46 93.96 92.68 89.32 83.07

MFSþSVM [25] – – – – – – – – 92.74 91.38 88.36 82.24

WMFSþSVM[25] – – – – – – – – 98.60 98.01 96.95 93.42
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by using the multi-fractal spectrum (MFS). Recently, Xu et al. [25]
presented a new descriptor based on multi-fractal analysis in
wavelet pyramids of texture images (WMFS).

The performance of the proposed CRLBP (R¼3, P¼24) is com-
pared with that of these non-LBP methods. The experimental results
of MFS and WMFS on UIUC database are from [25]. The Chi-square
dissimilarity defined in Section 3.3 and the nearest neighborhood
classifier are used for all other methods here. The experimental
results on three texture databases are listed in Table 7.

We could make the following findings from Table 7. First, the
CRLBP achieves similar classification rate to VZ_Joint on these
databases. It should be noticed that the VZ_Joint requires a texton
generation process, which often cost several hours. While the CRLBP
is computationally efficient since it does not require texton genera-
tion step. By the same hardware the CRLBP takes 50 ms, while
VZ_Joint spends about 700 s to build a texture histogram for one
image. Thus, the CRLBP is much more efficient than VZ_Joint. Second,
compared the CRLBP with VZ_MR8, the CRLBP performs better than
VZ_MR8 on Outex database, and the VZ_MR8 performs slightly better
on other databases. Similar to VZ_Joint, VZ_MR8 also need to cluster
the textons from the training set, and total 38 filters are used in the
MR8 filter bank. Compared to VZ_MR8, the CRLBP is more simple and
faster. Third, the MFS is proved to be robust to view-point changes
[24] and it performs impressively on the UIUC database which
contains materials imaged under significant viewpoint variations.
Both the CRLBP and the MFS are computation efficient, and their
performances on the UIUC database are also similar to each other.
Last, WMFS performs much better than other methods on the UIUC
database. It also should be noticed that the scales of the images are
normalized before the multi-orientation wavelet pyramid multi-
fractal analysis in WMFS [25]. The scale estimation and normalization
step can greatly enhance the performance of the WMFS, which is not
applied in other methods. In one word, the CRLBP can achieve
comparable classification rate to other recent non-LBP texture
classification methods except the WMFS on the UIUC database.
5. Conclusions

In this paper, we studied the two main demerits of Local
Binary Pattern (LBP), and then we proposed a new robust frame-
work of LBP, named Completed Robust Local Binary Pattern
(CRLBP). In order to make a balance of robustness and stability,
we introduced a parameter a specified by user. Experimental
results obtained from three databases clearly demonstrate that
CRLBP (a¼1) and CRLBP (a¼8) are insensitive to noise, and both
of them can obtain impressive texture classification accuracy.
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