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a b s t r a c t

In this paper, two perceptually motivated morphological strategies (PMMS) are proposed to enhance

the retrieval performance of common shape matching methods. Firstly, two human perception customs

are introduced, which have important relations to shape retrieval. Secondly, these two customs are

properly modeled by morphological operations. Finally, the proposed PMMS is applied to improve the

retrieval performances of a popular shape matching method named Inner-Distance Shape Contexts

(IDSC), and then the Locally Constrained Diffusion Process (LCDP) method is exploited to further

enhance the retrieval performance. This combination achieves a retrieval rate of 98.56% on MPEG-7

dataset. We also conduct the experiments on Swedish Leaf dataset, the ETH-80 dataset and the Natural

Silhouette dataset. The experimental results obtained from four datasets demonstrate clearly the

effectiveness of the proposed method.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Shape is one of the most important features of an object.
It plays a key role in human perception, and has been widely
exploited for many computer vision applications such as object
classification, object recognition and object retrieval. Generally, in
a shape-based object retrieval application, given a query object,
the most similar objects will be retrieved from a dataset accord-
ing to certain similarity or distance measures, which are gener-
ated by shape matching algorithms. In the past decade, many
shape matching algorithms have been proposed [1–10]. Designing
a suitable shape matching method for robust shape retrieval,
however, is a very difficult task. Some researchers therefore start
to explore new perspectives to enhance the retrieval performances.
Recently, many novel shape retrieval methods providing new
perspectives have been proposed [11–19], and have achieved
promising retrieval performances. Here, for convenience’s sake,
we call them as enhancing methods. Further, they could be divided
into three categories, i.e., context-based, knowledge-based and
fusion-based.

Context-based methods are the most widely studied enhan-
cing methods so far. Traditionally, in a common shape matching
method, matching a pair of shapes would generate a similarity or
distance measure, which has no relationship with other shapes.
Recently, it is believed that all shapes should be considered as a
group rather than pairs of shapes in shape retrieval. Precisely,
ll rights reserved.

.

when the target similarity or distance measure is computed
between one pair of shapes, all similarity or distance measures
between other shapes within the group could provide useful and
complementary information to further correct the target measure.
In this way, more satisfactory retrieval results could be obtained.
Here, the similarity or distance measures between other shapes
within the group are regarded as the context of the target
measure. Thus, those methods based on this strategy are called
as context-based methods. Yang et al. [11,15] proposed a method
to improve the shape retrieval performance through graph
transduction by propagating the model through all existing
shapes. They took advantage of the manifold formed by the
existing shapes, and used an unsupervised graph transduction
approach to learn a better measure for retrieval. Kontschieder
et al. [12] proposed a modified mutual K nearest neighbor graph
to consider the underlying structure of the shape manifold.
The manifold is estimated from the shape similarity measures
between all the shapes within a dataset. Yang et al. [13] later
proposed the method of Locally Constrained Diffusion Process
(LCDP) to better enhance the retrieval performance, in which the
influence of other shapes is propagated as a diffusion process on a
graph formed by the given set of shapes. However, the classical
diffusion process is unstable for sparse space, so they add some
local constraints using K nearest neighbor graph to achieve a
more robust diffusion process. Egozi et al. [16] proposed a meta-
shape-similarity approach to characterize a given shape by its
similarity to its K nearest neighbors. This approach does not
propagate similarities, but aims to compare local graph structures
as intrinsic similarity measures. Recently, Yang et al. [19]
proposed a novel affinity learning method using Tensor Product
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Graph, in which not only local but also long range similarities
among graph nodes are explicitly considered as higher order
relations. They also proposed a novel way to construct the
neighborhood structure called Dominant Neighborhood to auto-
matically determine the optimal number of neighbors, which is
also a free parameter in LCDP.

Recently, exploiting prior knowledge to improve the retrieval
performance becomes a new trend of the enhancing methods,
which inspires the knowledge-based methods. As we know, most
existing shape matching methods are invariant to scaling and
rotation, and are robust to deformation to some extent. In shape
retrieval applications, however, the ultimate goal is to obtain
human-like retrieval results, where prior knowledge and high
level understanding of shapes are very necessary. Thus, in recent
years, how to utilize prior knowledge of human visual perception
customs to improve the retrieval performance has received more
attentions. Temlyakov et al. [17] proposed two perceptually
motivated strategies for shape retrieval. The first strategy is to
find the strand structure of the shape, a very thin and elongated
shape part, and then decomposed the whole shape into a base
structure and a set of inward or outward pointing strands.
To match two different shapes, the base structures and strand
structures of these two shapes are compared, respectively.
The second strategy is to identify the bilateral symmetry of the
shapes and unify the aspect ratio of shapes according to the
symmetric axis before comparison. These two strategies could be
applied simultaneously to improve the overall retrieval perfor-
mance. Gopalan et al. [18] also proposed a knowledge-based
approach operating on the contour points rather than the shape
image, which considers the changes in 2D shape due to 3D
articulations assuming a weak perspective camera model. In this
approach, the parts of the shape through approximate convex
decomposition is firstly estimated, and then part-wise affine
normalization is performed to all contour points.

Fusion-based methods have been widely exploited in many
areas in computer vision, such as multimodal biometrics, but they
are seldom reported in shape retrieval. It is well known that
different shape descriptors could capture different properties of
the shapes, which might be complementary to each other. So
fusing different measures might lead to a better retrieval perfor-
mance. Recently, Bai et al. [14] proposed the co-transduction
algorithm to fuse different similarity measures for robust shape
retrieval. Given two similarity measures and a query shape, this
algorithm iteratively retrieves the most similar shapes using one
measure and assigns them to a pool for other measures to do a re-
ranking and vice-versa. They also evaluated a classical fusion
method, i.e., Sum rule, and proved that the proposed fusion
algorithm is very effective.

Generally speaking, the context-based methods make full use
of the information of the dataset; the knowledge-based methods
take the prior information of human visual perception customs
into account; and the fusion-based methods integrate useful
information from diverse properties of different shape matching
methods. So these three categories methods are intrinsically
independent, and could be applied simultaneously to enhance
the retrieval performance. In fact, Temlyakov et al. [17] have
combined one context-based method with their knowledge-based
method. And Bai’s method [14] integrates one context-based
method and one fusion-based method, which achieves impressive
retrieval results.

Notice that, all methods mentioned above used the method
of Shape Contexts (SC) [1] or Inner-Distance Shape Contexts
(IDSC) [1,2,5] to compute the basic distance measures. The
method of SC with Weighted Bipartite Matching was proposed
by Belongie et al. [1], which describes the relative spatial
distribution (distance and orientation) of the feature points by
the information of other points. Given n sample points x1, x2, y,
xn on a shape, the shape context at point xi is defined as a 2-D
histogram hi of the distance and angle joint distribution of the
remaining n�1 points. Later, SC was extended by Ling et al. [2,5]
to IDSC with Dynamic Programming (DP), where Euclidian dis-
tance in SC is simply replaced by inner distance and the natural
constraint of points order is introduced to apply DP. It is proved
that the inner distance is more suitable for non-rigid shape
matching, and DP is more efficient than Weighted Bipartite
Matching. Up to now, SC and IDSC with DP are regarded as the
most robust and efficient shape matching methods and have been
used in a wide range of computer vision applications [10,14,18].
Especially, the method of IDSC is regarded as the only effort
addressing the planar articulation problem [18].

As mentioned above, in knowledge-based methods, percep-
tually motivated strategies have been successfully exploited to
improve the retrieval performance [17,18]. However, research on
this topic is still very preliminary. Some issues should be further
studied in depth, e.g., ‘‘is there any new perceptually motivated
strategy that could be used?’’. In [17], the knowledge-based
method proposed by Temlyakov et al. explicitly removes the
inward and outward strand structures of the shapes and adjusts
the original shape to some standard form according to the bilateral
symmetry, both of which are motivated by human perception
customs. However, in their method the strands structures are only
restricted to thin and elongated type, which is not enough to
significantly improve the retrieval performance. In this paper, we
propose a novel knowledge-based method, which is also moti-
vated by human perception properties and is based on morpho-
logical operations. Following the methods mentioned above, we
also select the IDSC algorithm to compute the basic distance
measure. The proposed method could improve both the accuracy
and robustness of the retrieval. We then combine our method with
the LCDP method to further enhance the retrieval performance as
previous knowledge-based enhancing method did [17]. The main
contribution of this paper is twofold. First, we confirm that two
human perception customs introduced in Section 2 should be
taken into consideration for shape retrieval. Second, it is demon-
strated that morphological operations could simulate these two
human perception customs properly and the main structure of the
shape could be obtained after the morphological processing.
Meanwhile, two morphological strategies have been explored,
and our experiments demonstrate the better one in terms of
performance and usability.

The rest of this paper is organized as follows. Section 2
introduces two human perceptual customs. Section 3 introduces
the basic morphological concepts and explains two morphological
strategies. In Section 4, experimental results on four datasets are
reported which demonstrate the effectiveness of the proposed
method. In Section 5, we conclude the whole paper.
2. Two human perceptual customs

When people retrieve objects based on shape features, the
retrieval results would be easily influenced by their perceptual
customs, such as dividing the shape into base structure and
strand structures, and identifying the bilateral symmetry of
shapes. These two customs have been well handled by Temlyakov
et al. [17], and can help get more human-like shape retrieval
results. Inspired by their work, we also introduce two customs
that could strongly affect the retrieval results. First, people would
tend to neglect small deformation of the shape and only use the
main structure of the shape for retrieval. Second, if the shape
consists of main structure and inward parts, people would tend to
neglect the inward parts and only regard the shape as the main



Fig. 1. Difference between the base and strand structures in Temlyakov et al.’s method and the main structure in our approach: (a) the original shape in real line and one

possible main structure in dashed line; (b) the base structure; (c) the strand structures; (d) thin and elongated strand that could be processed in Temlyakov et al.’s method

defined by small area and small ratio of width to length.
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structure. These two customs are active whenever people retrieve
shapes. Therefore, we can design a shape retrieval approach
taking these two customs into account. Here, it should be noted
that the main structure of a shape is different from the base
structure defined in Temlyakov et al.’s method. The main struc-
ture is not a single shape that depicts the object, but a possible
region that is consistent with the shape perceived in our minds.
To illustrate the difference between the main structure defined by
us and the base structure defined in Temlyakov et al.’s method, an
example is shown in Fig. 1. Fig. 1(a) shows an original shape
represented by real line. Its base and strand structures are
depicted in Fig. 1(b) and (c), respectively. However, its main
structure may be a circle represented by dash line as shown in
Fig. 1(a) since one person may think it is an approximately
circular object according to his/her basic perception. In fact, the
given main structure is only one choice among many possible
candidates, on the contrary, the base structure is fixed.
Fig. 2. Modeling custom one by contour smoothing and morphological operation.
2.1. Modeling custom one

Generally, small deformations between shapes are always
inevitable due to inter-class variation or image noise. In practice,
people are inclined to neglect these deformations and regard the
shapes with similar main structure as of the same class. To reduce
the effect of these small deformations, some processings can be
applied to the original shapes, such as contour smoothing [20]
and morphological operation, which would be carefully explained
in the next section. After using one of these two processings,
small deformations may be removed, and main structures of the
shapes can be obtained. In other words, these two processings can
be used to model custom one, and some examples are shown in
Fig. 2(a).

However, the contour smoothing would cause serious problems
when it is applied to certain class of the object. Obviously, without
knowing the original shapes, it can be seen from the second
column of Fig. 2(b) that the Gaussian smoothed shapes might be
recognized as something else (like the silhouette of some animals,
e.g., snake and rabbit) rather than the triangle and square. So the
contour smoothing cannot be used alone to simulate human
perception. Specifically speaking, the contour smoothing is con-
sistent with human perception when facing the small deforma-
tions, but it could not handle severe deformation properly. On the
contrary, the morphologically processed images can well reflect
the main structures of the shapes, and are consistent with human
perception.
2.2. Modeling custom two

When shapes consist of main structure and inward parts,
people often neglect the inward parts and regard the shape as
the main structure, which is the custom two we introduced
above. In Temlyakov et al.’s method, thin and elongate inward
parts have been detected and filled [17]. Their method could only
handle thin and elongated strands, as shown in Fig. 1(d).
However, the inward parts sometimes contain very complex
structures and may be even larger than the base structure. In
these cases, Temlyakov et al.’s method is invalid, such as original
shapes depicted in Fig. 3(a). In order to conduct the retrieval more
effectively, we try to extract possible main structure of the shape.



Fig. 3. Modeling custom two by convex hull and morphological operation.

Fig. 4. Three original shapes (depicted in the first row), and their corresponding

shapes (depicted in the second row) after filling the space gaps in the large scale.
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An intuitive method is to represent the main structure by convex
hull, and some examples are shown in the second column of
Fig. 3(a). Though the convex hulls of some shapes are consistent
with human perception, they are not the best choices since they
might overprocess the shapes as shown in the second column of
Fig. 3(b). In the third column of Fig. 3(a) and (b), the correspond-
ing morphologically processed images are depicted, which are
more consistent with the human perception. From Fig. 3, it can be
preliminarily concluded that the morphological operations may
be a good way to model custom two.
2.3. Other discussions about two human perceptual customs

In fact, people would tend to consider the shape and space
gaps around it as a whole object, and ignore certain variations
within this object area, which leads to these two customs
introduced above. Exactly speaking, in the small scale filling
the space gaps around the shape would equal to smoothing
the contour, while in the middle scale it would equal to filling
the inward parts. Surprisingly, when the space gaps are filled in
the large scale, it is still consistent with our perception to some
extent, and the original shape would be expanded to occupy
meaningful space, as shown in Fig. 4. To define different scales,
the ratio of the area of the filled gaps to the area of the original
shape could be used; however, it is unnecessary to be computed
explicitly. In most cases, filling the space gaps in the small and
middle scales is enough, and the most suitable scale to simulate
human perception would be determined through experiments.
The two customs introduced above could be explained to
some extent by Gestalt Theory [21,22] for human perception.
The fundamental principle of Gestalt Theory is the law of
pragnanz (German for pithiness), which suggests that humans
often order their experience in a manner that is regular, orderly,
symmetric and simple. The refinements of the law of pragnanz
include many gestalt laws, such as the law of closure and the law
of convexity. The law of closure suggests that the mind may
perceive illusory elements in order to complete a regular figure,
which increases the regularity of the original figure. And the law
of convexity means that if some elements suggest themselves as
the boundary of a convex figure, the mind may perceive illusory
convex contours to complete the convex figure. Obviously, the
proposed customs could be easily explained in these two laws,
since filling the space gaps would definitely increase the regular-
ity and convexity of the shape. In general, the operation of filling
the space gaps makes the shape more regular and simple as the
law of pragnanz expects. Notice that, the original shape contains
all the information and what is the best for retrieval is unknown,
so we not only use the main structure alone for retrieval, but also
propose a fusion procedure to incorporate the retrieval results
using original shape and that using the main structure, which is
detailed in Section 3.3.
3. Morphological strategies for simulating human perception

3.1. Mathematical morphology

Mathematical morphology is a geometric approach for non-
linear image processing, and could be applied for shape analysis
in binary and grayscale images. Morphological operations are
based on morphological operators, which are defined as combina-
tions of basic numerical operations taking over an image A and a
small object B. This small object B is called a Structuring Element
(SE), which is used as a probe to scan image A and modify image A

according to the specified rule. Different SEs and different
modifying rules constitute all kinds of morphological operators,
which are powerful tools for image processing and analysis. In
other words, diverse morphological operators could be con-
structed to meet the user’s demands.

In shape analysis problems, only binary image is needed,
where object is usually depicted with value ones and background
is depicted with value zeros. In such cases, binary-image math-
ematical morphology is enough. Two basic operators extensively
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presented in the literatures are known as dilation and erosion,
which are defined respectively as

A� B¼
[

bAB

Ab ð1Þ

AYB¼
\

bAB

A�b ð2Þ

where Ab means translation of image A with a displacement
vector b contained in B. So the dilation of A by B is regarded as the
set union of image A translated by all vectors contained in B and
erosion is regarded as the intersection of similar translated
images of image A. In general, the dilate operation would expand
the image A and the erosion operation would shrink the image A.
3.2. Morphological strategy

Based on two basic operators, many morphology operations
could be derived such as opening operation and closing operation,
which are defined, respectively, as

A3B¼ ðAYBÞ � B ð3Þ

AdB¼ ðA� BÞYB ð4Þ

It could be seen that opening operation is defined as an erosion
operation followed by a dilation operation using the same SE and
closing operation is defined as a dilate operation followed by an
erosion operation using the same SE. Both opening operation and
erosion operation have the smoothing effect on the shape con-
tour, however, the opening operation would remove thin and
elongated strands and the closing operation would fill the gaps
and holes. To simulate the human perception properties, we
prefer using closing operation as our basic strategy. Exactly
speaking, we prefer to process the image using dilate operation
first and then using erosion operation.

As mentioned above, those two human perception customs are
in different scales, so morphology operations should also be
applied in different scales to simulate filling the gaps. Here, two
optional strategies could be applied to conduct the simulation.
First, the size of SE B could be changed to represent different
scales, which means that just the closing operation is applied with
some suitable SE. Second, the times of dilate operations and
corresponding times of erosion operations could be increased to
capture shape variations of different scales, which means that the
size of SE is fixed and multiple times of dilate followed by the
same times of erosion are applied. Notice that, in shape retrieval
application, the rotation of shapes should not affect the final
results, so the only suitable form of SE is ‘disk’ rather than other
commonly used elements such as ‘diamond’ or ‘square’. In Fig. 5,
the processed images obtained by these two strategies are shown.
It could be seen that both strategies could properly simulate
human perception in different scales and result in similar results.
In the small scale, the gaps of feet are filled, which means the
small deformation of the feet is neglected. In the middle scale, the
gaps between legs are filled, which means the orientation of the
legs is neglected. In the large scale, the gaps between body and
legs are filled, and how the body is supported is neglected. In all
cases, the main structure of the bird is maintained and can be
easily perceived by human. Notice that the processed images in a
larger scale include the filling effect in a smaller scale and at the
limit (as the SE expanded) the closing operation will approximate
the convex hull, which is not the optimal simulation of human
perception, so our goal is to find the most suitable scale to
simulate human perception.
3.3. Incorporating perceptual retrieval results

The proposed morphological strategy could be incorporated
into any available shape matching method. For a certain shape
matching method, it can generate a matching cost C(S1,S2)
between shapes S1 and S2. Usually, this matching cost measures
the shape distance and is invariant to rotation, translation and
scaling. Assuming that the shapes S1 and S2 are processed with
the proposed morphological strategy, which result in two new
shapes, i.e., M1 and M2, respectively, then another matching cost
C(M1,M2) using the same shape matching method could be
computed. We believe that if S1 and S2 are similar under human
perception, then C(M1,M2) should be a smaller matching cost.
So the following formula is used to determine the final distance
measure D(S1,S2) between S1 and S2:

DðS1,S2Þ ¼minðCðS1,S2Þ,aUCðM1,M2ÞÞ ð5Þ

where a is a scalar larger than one which depicts the penalty of
processing S1 and S2 to M1 and M2, and it is determined by
experiments. In fact, this Min rule is just one of many information
fusion methods, and other rules could be used, such as Sum rule,
or Product rule. However, in this case the Min rule has the clearest
explanation, and the experiments demonstrate its superiority. In
general, we believe that if the shape should be retrieved by its
local variations, then C(S1,S2) is more suitable, because this cost
reflects global and local variations more equally than C(M1,M2).
Since the distance between any two processed shapes is com-
puted, the computational complexity of using this fusion proce-
dure is twice as much as that of using the method of IDSC alone.
4. Experiments

In this paper, the IDSC method is used to compute the
matching cost C(S1,S2) between shapes S1 and S2 for its popularity.
And, the LCDP method is exploited to further improve the
retrieval results. For IDSC, 128 points on the contour are
uniformly sampled and the shape context is constructed with
8 bins for distances and 12 bins for angles. For LCDP, the best
values of K and t are determined experimentally. The value of K is
the number of robust neighbors and the value of t is the optimal
times of graph propagation. The codes of IDSC are implemented in
Matlab and C, while the codes of LCDP are in Matlab, both of
which are obtained from their authors [5,13].

The proposed method is firstly evaluated on the most widely
used MPEG-7 dataset (specifically the MPEG-7 CE-Shape-1 Part B)
[23] that contains 70 shape classes and 20 different shapes per
class. In total, the MPEG-7 dataset contains 1400 samples. Mean-
while, it is a very challenging dataset for shape retrieval applica-
tion. The examples of shape depicted above are all from this
dataset. In experiments, the most commonly accepted perfor-
mance measure, Bull’s eye retrieval rate, is computed to compare
the retrieval performances of different methods, which is the ratio
of total number of correct matches to maximum number of
correct matches. Each image is used as a query, and the number
of images that belong to the same class is counted in the top 40
similar images to the query image. Since there are 20 shapes in
one class, the maximum number of correct matches for a single
query image is 20, and the total number of correct matches is
1400�20¼28,000. Besides retrieval rates, the recognition rate of
the proposed method using the leave-one-out method is also
reported, where each shape in turn is left out and used as a query.

To demonstrate the generalization ability of the proposed
strategies, experiments are also conducted on the Swedish Leaf
dataset [24], the ETH-80 dataset [25] and the Natural Silhouette
dataset [26]. Here, it should be noted that only recognition



Fig. 5. Results of using different morphological strategies: changing the SE size (depicted in the first row) or changing the operation times (depicted in the second row).

Fig. 6. Eight samples from Swedish Leaf dataset.

Fig. 7. Eight samples from ETH-80 dataset.

Fig. 8. Twelve samples form Natural Silhouette dataset.
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experiments are conducted on Swedish Leaf dataset and ETH-80
dataset, and both recognition and retrieval experiments are
conducted on Natural Silhouette dataset. The Swedish Leaf
dataset contains isolated leaves from 15 different Swedish tree
species, with 75 leaves per species. Fig. 6 shows some represen-
tative examples from Swedish Leaf dataset. Following the proto-
col of previous works [4,5], the first 25 images from each class are
used as prototypes and the rest 50 images are exploited for test.
The ETH-80 dataset contains 80 objects from eight categories. For
each object, there are 41 images from different viewpoints. So, the
dataset contains 3280 images in total. Fig. 7 shows some repre-
sentative examples from ETH-80 dataset. To test the recognition
rate, the leave-one-object-out method is used as previous works,
which means that each shape is compared to all the shapes from
other 79 objects and the recognition rate is averaged over all
objects. The Natural Silhouette dataset consists of 490 shapes of
12 different classes. Twelve samples from this dataset are shown
in Fig. 8. In the recognition experiments, a random selection of
396 shapes were used for training and the remaining 94 shapes
were used for test, where the average error rates over 100 random
splits are reported. In retrieval experiments, for each shape, the
15 closest shapes are retrieved and the average recall and
precision rates are computed. Precision is defined as the ratio of
the number of correct retrieved shapes over the total number of
retrieved shapes. Recall is defined as the ratio of retrieved shapes
over the total number of relevant shapes in the dataset.

Notice that the shapes in the images are not of the same scale,
so normalization procedure is applied to make them suitable for
the morphological operations of certain scale. We believe that the
convex hull could properly represent the scale of the shape, and
normalize all shapes in the images to have a convex hull’s area
near 5000.

4.1. Results on MPEG-7 dataset

In the retrieval experiments on MPEG-7 dataset, using the
closing operator to process the images with different sizes of the
SE is firstly tested. The retrieval results are listed in Table 1 and
corresponding a in Eq. (5) is shown in the brackets below.

It can be seen that the best performance is 90.24% when the
size of SE is 33 and the value of a is 1.6. Notice that in Temlyakov
et al.’s methods, a strategy based on similar motivation could
only enhance the performance of IDSC to 87.68% [17], which
is obviously lower than our results. Then the LCDP method is
applied to further improve the retrieval results, which are also
shown in Table 1. Here the best performances of the method



Table 1
Retrieval results of different SE’s size.

Size of SE 5 9 15 21 27 33

Rate (%) (a) 89.54 (1.3) 89.68 (1.4) 89.78 (1.5) 90.04 (1.5) 90.14 (1.5) 90.24 (1.6)

Rate (%)þLCDP (K,t) 97.94 (15,14) 98.14 (15,23) 98.46 (15,26) 98.49 (15,23) 98.53 (15,20) 98.48 (15,23)

Fig. 9. Improved correct retrieval numbers, where the horizontal axis is the index

of the samples. (a) The results of using morphological strategy alone. (b) The

results of using morphological strategy and LCDP.
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‘IDSCþMorphological strategyþLCDP’ are listed, and the corre-
sponding parameters of LCDP are in the brackets with the form of
(K, t). The best performance is achieved when the size of SE is 27,
which indicates that a suitable size would produce more robust
distance measures and the retrieval performance could benefit
from the LCDP algorithm. In fact a higher retrieval rate could be
achieved without LCDP with size larger than 33, but the best
result with LCDP has been achieved in a suitable size.

The improved correct retrieval numbers of each query are
shown in Fig. 9, where (a) depicts the results of using morpho-
logical strategy alone and (b) depicts results of using morpholo-
gical strategy and LCDP. It can be seen that about one quarter of
all the samples have gained positive effect from the proposed
morphological strategy, and most of them are shapes with
complex inwards parts. Meanwhile, most of the samples have
gained positive effect from further enhancement by LCDP.

The second morphological strategy is tested, which uses
the dilate operations multiple times followed by erosion opera-
tions for the same number of times with the fixed SE. Here, the
SE is a disk with the size of 5. The retrieval results are listed in
Table 2.

It can be seen that the best performance of IDSCþMorphological
strategy is 90.18% when the operation time is 6 or 8. Then the
LCDP method is applied to further improve the retrieval results, as
shown in the third row of Table 2. Again, the best performance of
‘IDSCþMorphological strategyþLCDP’ is achieved in a different
time, which indicates that a suitable time would produce more
robust distance measures and could benefit the LCDP algorithm.
In Table 3, the LCDP performances with different K and t for ope-
ration time of 4 are shown, and the retrieval is robust in a wide
range of parameters. The best K is 15 in all cases, and the best t

varies around 26.
Using the first morphological strategy would achieve a slightly
lower total performance, and determining the suitable size of SE
is troublesome. Obviously, tuning the operation time is quite
natural and easy, so the second morphological strategy is a better
choice both for accuracy and usability.

The missing retrieval numbers of each query are shown in
Fig. 10(c), and it can be seen that most of the shapes could acquire
correct retrieval results. The missing retrieval numbers focus on
class ‘spoon’, which is very difficult to retrieval due to great
interclass variation, as shown in Fig. 10(d). Some other missing
samples are due to the larger stretch of the shapes, which our
strategy could not deal with, but they could be handled by bilateral
symmetry identification method proposed by Temlyakov, and
samples are shown in Fig. 10(a) and (b).

The MPEG-7 dataset is widely used; therefore, many shape
matching methods have reported performances on it. To the best
of our knowledge, all the retrievals results reported better than
IDSC and their corresponding recognition rates are listed in
Table 4. Obviously, the proposed method achieves higher retrieval
rate than Temlyakov et al.’s method, which uses similar motiva-
tions. It is noticed that the performances of combining IDSC,
Affine Normalization and LCDP (IDSCþAffine Normalizationþ
LCDP) have not been reported, so this combination is tested here,
and it achieves a 100% Bull’s eye retrieval rate. In this case, larger
and more complex shape datasets are in demands for further
research in this area. Surprisingly, though Affine Normalization
could dramatically increase the retrieval rate, it would degrade
the recognition performance to 91.07%, which is much lower
than other methods. On the contrary, our proposed method could
achieve very robust retrieval and recognition performances
simultaneously.

4.2. Results on Swedish Leaf dataset and ETH-80 dataset

The recognition rates obtained on these two datasets are listed
in Table 5. In these experiments, only the strategy of changing the
operation times is applied. Notice that the reported performances
of IDSC and our reproduced ones are slightly different. A possible
reason about this phenomenon is that the segmentation method
for converting the original color images to binary object shape
might be different. Here, using reproduced ones for performance
comparison may be a fair choice. On both datasets using mor-
phological strategy could improve the recognition results. Though
the improvement is not significant, considering that the recogni-
tion task is usually more dependent on details, which is not the
main focus of Gestalt Theory, the effectiveness of the proposed
method is still positive.

4.3. Results on Natural Silhouette dataset

Both recognition and retrieval experiments have been con-
ducted on this dataset, where only the results of IDSC and that of
IDSC with our strategy are reported. For results of other methods
on this dataset, one could refer to [8,26].

For the recognition experiments, the average recognition rates
and the standard deviations from 100 random split are shown in
Table 6. It could be seen that, no significant improvement is
achieved. With the results in Table 5, two conclusions could be



Table 2
Retrieval results of different operation times.

Operation times 1 2 4 5 6 8

Rate (%) (a) 89.54 (1.3) 89.64 (1.3) 89.89 (1.5) 90.04 (1.5) 90.18 (1.5) 90.18 (1.6)

Rate (%)þLCDP (K,t) 97.94 (15,14) 98.00 (15,26) 98.56 (15,26) 98.52 (15,23) 98.52 (15,20) 98.43 (15,23)

Table 3
Retrieval results of different LCDP parameters.

K t

14 17 20 23 26 29 32

20 98.23 98.14 97.98 97.72 97.42 97.26 97.05

15 98.45 98.52 98.49 98.55 98.56 98.51 98.43

10 98.09 98.16 98.21 98.26 98.29 98.38 98.40

Fig. 10. Missing retrieval results and samples, where the horizontal axis is the

index of the samples.

Table 4
Retrieval performance of different methods.

Algorithm Retrieval rate

(%)

Recognition rate

(%)

IDSC [2,5] 85.40 98.21

Symbolic representation [8] 85.92 98.57

HPM [3] 86.35 95.71

IDSC (using EMD) [6] 86.56 NA

SC (using DP) [1] 86.80 99.14
Triangle area [7] 87.13 NA

Shape tree [4] 87.70 NA

ASC [10] 88.30 NA

Layered graph [27] 88.75 NA

Variational shape matching [28] 89.05 98.86

Contour flexibility [9] 89.31 NA

IDSCþLP [11,15] 91.00 NA

IDSCþLCDP [13] 92.36 98.71

SCþGMþMeta [16] 92.51 NA

SCþLP [11,15] 92.91 NA

IDSCþMutual graph [12] 93.40 NA

IDSCþAffine normalization [18] 93.67 91.07

IDSCþTwo perceptual strategiesþLCDP

[17]

95.60 NA

ASCþLCDP [10] 95.96 NA

ASCþTPG [19] 96.47 NA

SCþIDSCþCo-transduction [14] 97.72 NA

IDSCþMorphological strategyþLCDP

(The proposed method)

98.56 98.86

IDSCþAffine normalizationþTPG [19] 99.99 NA

IDSCþAffine normalizationþLCDP 100.00 96.79

Table 5
Recognition rates on Swedish Leaf dataset and ETH-80 dataset.

Dataset IDSC only IDSCþMorphological strategy

Reported

[5]

Reproduced Times 1 Times 2 Times 3

Swedish Rate (%) 94.13 93.73 93.87 94.80 94.67

Leaf a NA NA 1.03 1.06 1.08

ETH-80 Rate (%) 88.11 87.47 87.71 88.04 87.59

a NA NA 1.1 1.3 1.6

Table 6
Recognition rates on Natural Silhouette dataset.

IDSC only IDSCþMorphological strategy

Times 1 Times 2 Times 3 Times 4

R.-X. Hu et al. / Pattern Recognition 45 (2012) 3222–3230 3229
drawn. First, the effect of morphological strategy on recognition
experiments is positive but not significant. Second, the operation
time of 2 also results in the best improvement.

For the retrieval experiments, the precision–recall curve is
shown in Fig. 11. It could be seen that with the morphological
strategy the retrieval results of IDSC are obviously enhanced, and
the best improvement is achieved when operation time is 3 with
a equal to 1.3. It could be concluded that the morphological
strategy would have larger positive effect on retrieval than on the
recognition.
Rate (%) 96.79 97.05 97.34 97.17 96.98

Std (%) 1.81 1.74 1.71 1.72 1.77

a NA 1.1 1.2 1.3 1.4

5. Conclusions

In this paper, we introduced two human perception customs
that should be simulated by a knowledge-based method to
enhance the shape retrieval performance of a common shape
matching method. The first is that people would tend to neglect
small deformations of the shape in retrieval and the second is
that people would tend to neglect the inward parts of shape.
To take into account both customs, we proposed two binary-image
morphological strategies to process the shapes, which are based on
dilate operation followed by erosion operation. The first strategy
changes the size of the structuring element while the second
strategy changes the times of the morphological operations. The
experiments prove that the second strategy is slightly better than
the first strategy.



Fig. 11. Precision–recall curve on Natural Silhouette dataset.

R.-X. Hu et al. / Pattern Recognition 45 (2012) 3222–32303230
Both strategies could be incorporated to any common shape
matching method to improve the retrieval performance, and the
experiments using IDSC have demonstrated the effectiveness of
the proposed method. Since the knowledge-based method and
the context-based method are independent, we also combined
our proposed methods with LCDP, and this combination achieved
the state-of-the-art performance of 98.56% on MPEG-7 dataset. In
the future, based on the proposed method, we will exploit fusion-
based methods to further enhance the retrieval performance.
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