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In this paper, an efficient local operator, namely the Local Quantization Code (LQC), is proposed for
texture classification. The conventional local binary pattern can be regarded as a special local quanti-
zation method with two levels, 0 and 1. Some variants of the LBP demonstrate that increasing the local
quantization level can enhance the local discriminative capability. Hence, we present a simple and

pixels located in different quantization levels are separately counted and the average local gray value
difference is adopted to set a series of quantization thresholds. Extensive experiments are carried out on
several challenging texture databases. The experimental results demonstrate the LQC with appropriate
local quantization level can effectively characterize the local gray-level distribution.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Texture classification is a basic issue in image processing and
computer vision, and playing a significant role in many applica-
tions, such as remote sensing, biomedical image analysis, image
recognition and retrieval. In these practical applications, it is very
difficult to ensure that captured images have the same viewpoint.
Hence, texture classification methods should be ideally invariant
to translation, rotation and scaling.

More and more attention has been paid on invariant texture
classification. So far, many approaches have been proposed to
achieve rotation invariance for texture classification that can be
broadly divided into two categories, i.e., statistical methods and
model-based methods, respectively. In statistical methods, texture
is generally described by the statistics of selected features, e.g.,
invariant histogram, texture elements, and microstructures. Davis
et al. [1] exploited polarograms and generalized co-occurrence
matrices to obtain rotation invariant statistical features. Duvernoy
et al. [2] introduced Fourier descriptors to extract the rotation
invariant texture feature on the spectrum domain. Goyal et al. [3]
proposed a method by using texel property histogram. Eichmann
et al. [4] presented texture descriptors based on line structures
extracted by Hough transform. In [33], Hanbay et al. presented
four effective rotation invariant features based on histograms of
oriented gradients (HOG) and co-occurrence HOG (CoHOG). In
model-based methods, texture is usually presented as a
g).
probability model or as a linear combination of a set of basis
functions. Kashyap et al. [5] developed a circular simultaneous
autoregressive (CSAR) model for rotation invariant texture classi-
fication. Cohen et al. [6] characterized texture as Gaussian Markov
random fields and used the maximum likelihood to estimate
rotation angles. Chen and Kundu [7] addressed rotation invariant
by using multichannel sub-bands decomposition and hidden
Markov model (HMM). Porter et al. [8] exploited the wavelet
transform for rotation invariant texture classification by means of
the Daubechies four-tap wavelet filter coefficients. Recently, Xu
et al. [30–32] proposed a scale invariant texture feature by means
of the multi-fractal spectrum.

McLean [15] proposed to use vector quantization for texture
classification. But the quantization step is processed on large
image area and thus loses the details of the local neighborhood
grayscale distribution. However, the local distribution has been
proven to be the important discriminative information of texture.
For example, Haralick proposed that central to virtually all aspects
of texture classification is the identification of a “texture cell” that
defines a local region containing the essence of the repeated
structure [16]; Effective texton-based methods [17,27–29] also
proved that texture classification can be tackled effectively by
employing only local neighborhood distributions .

Local texture descriptor is another example to prove the
importance of the local neighborhood distribution. In [9], Ojala
et al. proposed an efficient local operator, namely Local Binary
Pattern (LBP). The LBP extracts the local pattern and it is proven to
be invariant to monotonic grayscale transformation. Nowadays,
the LBP is one of the most popular local texture descriptors, since
it is simple and effective [26]. Many LBP-like local texture
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operators have been proposed after Ojala’s work, e.g., Heikkila
et al. [10] proposed center-symmetric LBP (CS-LBP) by comparing
center-symmetric pairs of pixels instead of comparing neighbors
with central pixels. Liao et al. [11] presented Dominant LBP (DLBP),
in which dominant patterns were experimentally chosen from all
rotation invariant patterns. Tan and Triggs [12] proposed the
method of Local Ternary Pattern (LTP), which extends original LBP
to 3-valued codes. Recently, Guo et al. [13] developed the com-
pleted LBP (CLBP) by combining the conventional LBP with the
measures of local intensity difference and central gray level.
Khellah [14] presented a new method for texture classification,
which combines Dominant Neighborhood Structure (DNS) and
traditional LBP, Zhao et al. [18] proposed to use local binary count
(LBC) to extract the local neighborhood distribution, Zhang et al.
[19] presented a new local energy pattern for texture classification,
Li et al. [20] proposed a scale invariant LBP by means of scale-
adaptive texton. Most Recently, Guo et al. [36] present a scale
selective CLBP. In addition, there is other way to look at LBP, e.g.,
LBP is regarded as a special filter-based method [24,25].

The LBP can be regarded as a special local quantization method
with two quantization levels, 0 and 1. How to select the quanti-
zation level is a basic issue of the traditional quantization meth-
ods. The specified gray value of each individual pixel is sensitive to
noise and illumination, thus lower quantization level is more
robust to the illumination changes. But reducing the quantization
level also loses detailed gray value information of pixel at the same
time. The LBP is insensitive to monotonic illumination changes by
quantizing the local gray level into only two levels. Meanwhile, the
two values (0 and 1) extract scarcely any gray value information of
the pixel. Although the LBP discards almost all the gray value
information of individual pixel, the quantized neighbor pixels are
combined together to describe the local pattern. Therefore, the LBP
can effectively characterize the local distribution. Is the local
quantization level needed to be increased? Does an optimal local
quantization level exist? How to describe the local distribution
when the quantization level is increased? In this paper, we shall
try to address these questions by proposing a new local operator
named Local Quantization Code (LQC). Experimental results illus-
trate that the LQC with appropriate local quantization level can
effectively characterize the local neighborhood distribution.

The rest of this paper is organized as follows: Section 2 briefly
reviews the basic principle of the relative variants of the LBP.
Section 3 presents the LQC in detail. Experimental results are
presented in Section 4, and Section 5 concludes the paper.
2. Related works and analyses

In this section we provided a brief review of the LBP and related
variants of the LBP, i.e., the LTP, the CLBP and the LBC.

As shown in Fig. 1, the algorithm of LBP contains three main
steps. First, the values of neighbor pixels are turned into binary
values (0 or 1) by comparing them with the central pixel. Second,
the binary numbers are encoded to characterize a local structure
pattern, and then the code is transformed into decimal number.
Finally, after the LBP code of each pixel is defined, a histogram will
be built to represent the texture image.
Fig. 1. Illustration of the LBP process. (P¼8, R¼1).
Usually, the LBP encoding strategy can be described as follows:

LBPP;R ¼
XP�1

p ¼ 0

sðgp�gcÞ2p; sðxÞ ¼
1; xZ0
0; xo0

(
ð1Þ

where gc represents the gray value of the center pixel and gp (p¼0,
…,P�1) denotes the gray value of the neighbor pixel on a circle of
radius R, and P is the total number of the neighbors. As afore-
mentioned, although the LBP is robust to monotonous illumination
changes, the binary quantization process also loses the detailed
gray value information of pixels. Hence, it seems that increasing
the local quantization level can enhance the discriminative cap-
ability of the LBP. However, it is very difficult to compute the LBP
codes directly when the local quantization level is increased. It is
easy to be found that the length of LBP feature become Lp if the
quantization level increases to L, e.g., if local quantization level is
4 and 16 neighbors are calculated, the length of LBP-like feature
will be 416.

Although it is hard to increase the local quantization level
directly in the LBP-like way, many works have been proposed to
extract the gray value information that omitted in the binary
quantization step of the LBP.

Tan and Triggs [12] proposed local ternary pattern (LTP) to
quantize the local neighbors into three levels. As illustrated in
Fig. 2, 2-valued (0, 1) LBP code is extended to 3-valued (�1, 0, 1)
ternary code by means of a threshold t. The upper pattern and
lower pattern are then encoded in LBP-like way, respectively. LTP
codes can extract more gray value difference information, but no
longer strictly invariant to monotonic gray scale transformation
since threshold t is specified by user. It also should be noticed that
the threshold t is set as 5 on many texture databases according to
the experimental performance. Since the gray value of the pixels
can be 0–255, the local quantization threshold seems quite small,
and this will also be discussed later in Section 3.2.

Guo et al. [13] proposed a completed framework of LBP (CLBP)
by combining the sign (0 or 1) feature with the magnitude (the
gray value difference) feature. Although the CLBP did not directly
increase the local quantization level, the magnitudes feature pro-
vided complementary gray value difference information that lost
during the binary quantization process. Moreover, Guo et al.
observed that the center pixel also had discriminative information.
The CLBP extended original LBP to a completed framework and
achieved impressive classification results.

These variants of the LBP demonstrate that increasing the local
quantization levels can enhance the discriminative capability.
Then the key question becomes how to increase the local quan-
tization level in an efficient and unified framework.

In [18], Zhao et al. proposed the local binary count (LBC) by
means of a local counting method to encode the rotation invariant
local distribution after local neighbors are quantized into two
levels. In the LBC, the number of value 1’s in the binary neighbor
sets is simply counted. As illustrated in Fig. 3, the number of value
1’s is 4 in the binary neighbor set, thus the LBC code of the central
pixel is 4. The LBC reveals another cursory encoding method to
characterize the local neighborhood distribution, and the LBC-like
encoding is easy to expand.
3. Local Quantization Code histogram method

3.1. Calculation of the Local Quantization Code

In the conventional LBP and its variants, each pixel in the local
neighbor set is turned into binary form by comparing it with the
central pixel. To increase the quantization level, a series of quan-
tization thresholds (σ1, σ2, σ3, σ4 …) need to be used. After these



Fig. 2. Illustration of the LTP (P¼8, R¼1).

Fig. 3. The illustration of the LBC (P¼8, R¼1).
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thresholds are fixed, the pixels on the local neighbor set are
classified into different quantization levels. The number of
neighbor pixels located at the ith quantization level (qi) is then
counted as follows:

qi ¼
XP
p ¼ 1

Lðgp�gcÞ; LðxÞ ¼
1; ifσir xj jrσiþ1

0; else

(
ð2Þ

where gc represents the gray value of the center pixel and gp (p¼1,
…,P) denotes the gray value of the neighbor pixel on a circle
neighbor set, and σi is the ith quantization threshold. As in [9], the
neighbors that do not fall in the center of pixels are estimated by
bilinear interpolation. Obviously, computing the qi is equal to
count the number of the neighbor pixels that are quantized into
the ith level.

After the qi at each local quantization level is calculated, we can
define the Local Quantization Code (LQC) as follows:

LQC ¼
XQ
i ¼ 1

qi � 10i�1 ð3Þ

where qi is the number of neighbor pixels at quantization level i,
and Q represents the total number of the neighbor quantization
levels.

The center pixel, which expresses the local gray level, also has
discriminative information. Therefore the proposed LQC is also
combined with the global quantization level of the central pixel:

LQC ¼ qc � 10iþ
XQ
i ¼ 1

qi � 10i�1 ð4Þ

where qc represents the quantization level of the central pixel. In
this paper, the central pixel is quantized by equally splitting the
gray level histogram. The proposed LQC encoding scheme adopts a
decimal system coding rather than commonly used binary system
coding, thus the central quantization level qc can be set from 0 to
9. Different to the neighbor pixels, the gray value of central pixel is
quantized by means of global quantization method instead of local
quantization. That is because qc is supposed to describe the level of
local gray value among the whole image.

Fig. 4 illustrates the encoding process of the LQC at (R¼1, P¼8).
Each cubic column denotes a pixel and the height of the cubic
column represents the gray value of corresponding pixel. In Fig. 4,
gray value of neighbor pixels is quantized into 4 levels. Then the
number qi (i¼1,…,4) of neighbor pixels located at each level is
counted. There are 1, 2, 2, 3 pixels located at 1st, 2nd, 3th, and 4th
level, respectively. Finally, numbers of pixels at different levels are
combined to form the LQC code 122. We omit the last number 3 at
1st level to reduce the feature size, since the total number of
neighbor pixels is fixed (1þ2þ2þ3¼8).

It is obvious that the LQC can accurately characterize the local
structure by means of more quantization levels than traditional
LBP. As shown in Fig. 5, different local structures may have the
same LBP code. But their LQC codes are quite different from each
other. Note that the LQC merely counting the number of pixels at
different levels and thus is strictly invariant to rotation. As a result,
the LQC encoding is very suitable for the rotation invariant texture
classification scenario.

In this paper, the neighbor number P at radius 1 is set as 8, i.e.,
(R¼1, P¼8), therefore the value of each qi can be nine value (0–8).
When the radius of the neighbor set enlarged, the value of each qi
is still quantized into nine values (0-8) so that the decimal system
based Eq. (4) can be used at larger radiuses. For example, the value
range of qi is 0 to 16 when the radius is 2, and this qi is then
directly quantized into nine levels (0–8).

After the Local Quantization Code of each pixel is calculated, a
histogram is built to represent the texture image. It should be
noted that although the size of LQC histogram is 10L with quan-
tization level L, many bins of the histogram are always zeros. That
is because there are only finite neighbor pixels to be encoded. For
example, if the q4 at the quantization level 4 is 8 with (R¼1, P¼8),
the LQC code only can be ‘800’ since there are total 8 neighbor
pixels. The rest codes ‘801’ to ‘899’ are thus insignificant and we
can simply remove these meaningless all-zeros-bins from the final
histogram. After removing the all-zeros-bins, the sizes of LQC
histograms are 9, 45, 165, 495 with (qc¼0, R¼1, P¼8) for quan-
tization level of 2, 3, 4, 5, respectively.

In conventional LBP, the gray value of local central pixel is used
as local threshold directly. It is clear that the fixed artificial
threshold is not robust to discontinuous and non-uniform illumi-
nation transformations, while the local difference is relatively
more insensitive to illumination transformations. Hence, we adopt
the average local difference to set the series of quantization
thresholds instead of fixed artificial thresholds. A base-threshold Δ
is computed as the average difference of local neighbors on the



Fig. 5. The LQC can discriminate different local structures with same LBP code.

Fig. 4. Illustration of LQC at (R¼1, P¼8).
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texture image as follows:

Δ¼ 1
P � Nc

XNc

i ¼ 1

XP
p ¼ 1

jgpi �gci j ð5Þ

where gp (p¼1,…,P) and gc are defined as in Eq. (1), Nc is the total
number of the central pixels on the texture image. The Δ reflects
the average difference of local gray-level, which is more robust to
monotonic illumination transformations than the artificial fixed
threshold. In this paper, the series of quantization thresholds (σ1,
σ2, σ3, σ4 …) are simply set as (0, Δ, 2Δ, 3Δ …) by means of the
base-threshold Δ in this paper.

3.2. The discussion of the quantization level

The main question of the LQC is how to select the optimal
quantization level. From Eq. (3) we can find that the length of the
feature vector becomes much longer when the local quantization
level increases. In this paper, a LBC-like feature is used to char-
acterize the local distribution instead of the LBP-like encoding.
That is because the length of LBP-like feature will increase even
longer when the local quantization level increases, e.g., if the
quantization level is increased to 3 at (P¼8, R¼1) local area, the
length of LBC-like feature will be as long as 103 (1000) while the
size of LBP-like feature will be 38 (6561). Although removing the
all-zeros-bins further reduces the size of LBC-like feature, the size
of the feature vector still enlarges too much when the local
quantization level increases. Hence, an optimal local quantization
level should be selected by considering both the additional dis-
criminative information and the computation complexity. Indeed,
the local quantization level should not be very high. There are two
main reasons.

Firstly, the illumination and gray scale change a lot in the real
texture image, that means the gray levels are discontinuous and
uneven on the whole image. But on the microcosmic local
neighbor area, the changes of the gray value are approximate
continuity and uniformity. Thus the gray value differences of the
local neighbor pixels are very small. Note that the local acute
gradient transformations often occur at the sharp edge area, such
as the edge of the foreground and the background. But most of the
local gradient transformations are relatively flat and mild at the



Fig. 6. Classification rate on Outex TC10 dataset with different central quantization
levels of the proposed LQC.
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texture area. To validate this opinion, we have calculated the
average local gray value differences of over 5000 natural texture
images (with the gray value from 0 to 255), the average local gray
value difference is 10.04 and over 90% images have the average
local gray value difference less than 20. Since the differences of
local gray-levels are small, the quantization level has no need to be
very high. That is also the potential reason why the local threshold
is very small in the experiment of the LTP.

Secondly, the neighbor pixels are finite and the feature histo-
gram will be sparser if the quantization level is too high. The LQC
histogram is a statistical feature. When the statistical quantities
(total pixels) are comparatively less, the statistical error will be
relatively higher since the statistical histogram feature is too long
and sparse. Especially when the resolution of texture image is very
small and the total number of the pixels is very less, the quanti-
zation level should be selected even smaller. In this paper, the
optimal quantization level of the neighbor pixels is set as
4 according to the experimental performance.
Fig. 7. Classification rate on Outex TC10 dataset with different neighbor quanti-
zation levels of the proposed LQC.
4. Experiments and discussions

To evaluate the effectiveness of the proposed method, we car-
ried out a series of experiments on several large and representa-
tive databases: the Outex TC10 dataset [35], the XU High Resolu-
tion database [21], the UIUC database [22], the Columbia-Utrecht
Reflection and Texture (CUReT) database [23], and the KTH-TIPS
database [34].

4.1. Other methods for performance comparisons

The LTP [12], which can be regarded as another way to increase
the local quantization level, is used as a comparison. The CLBP [13],
achieves almost the best performance among the single-scale
variants of LBP on many representative texture databases, is
used as another comparison. As an local counting based method,
the proposed LQC is also compared with the CLBC [18]. In addition,
the rotation invariant uniform mode LBPriu2 is used in these var-
iants of LBP since the LBPriu2 mode performs better than LBPri,
LBPu2, and normal LBP for rotation invariant texture classification
scenario [18].

In the experiments we evaluate different central quantization
levels and neighbor quantization levels. We use “LQC_C(x)N(y)” to
denote that the central pixels are quantized into x levels and the
local neighbor pixels are quantized into y levels, respectively.

4.2. Dissimilarity measure and multi-scale framework

In practical applications, several measures have been proposed
for discriminating the dissimilarity between two histograms. In
this paper, we utilized the χ2 statistics to address the problem. The
χ2 statistics is a bin-by-bin distance, which means only the pairs of
bins that have the same index are matched. If H¼{hi} and K¼{ki}
(i¼1, 2… B) denote two histograms, then χ2 statistics can be cal-
culated as follows:

dχ2 ðH;KÞ ¼
XB
i ¼ 1

ðhi�kiÞ2
hiþki

ð6Þ

In [9,13], a simple multi-resolution framework is used to
improve the classification accuracy, that is, by measuring the dis-
similarity as the sum of chi-square distances from all operators of
various radiuses. In this paper, assuming that all the methods used
the nearest neighborhood classifier for classification. The source
codes for the proposed method can be downloaded from the
website: http://zycv.890m.com/zyProjectPages/LQCH.zip

4.3. Experimental results on Outex TC10 Dataset

When conducting the experiments on the Outex database, we
used the Outex test suits Outex_TC_0010 (TC10), which contains
24 classes of texture images captured under nine rotation angles
(0°, 5°, 10°, 15°, 30°, 45°, 60°, 75°, and 90°). There are twenty
128�128 images for each rotation angle and the 24�20 images of
rotation angle 0° were adopted as the training data. The 24�160
images of other 8 rotation angles are used for test.

Figs. 6 and 7 illustrate the classification rate on TC10 dataset
with different central quantization levels and neighbor quantiza-
tion levels. The neighbor quantization level of the LQC is fixed as
4 for testing various central quantization levels in Fig. 6, and the
central quantization level is set as 6 for testing different neighbor
quantization levels in Fig. 7. From Fig. 6 we can find that the LQC
performs better than the CLBP and the CLBC when the neighbor
quantization level is set as 4, and the LQC with the central quan-
tization levels of 6 and 7 achieves better results than that of other
levels. That demonstrates not always the higher quantization
levels obtain the better classification rates. Fig. 7 also shows that

http://zycv.890m.com/zyProjectPages/LQCH.zip
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the LQC with appropriate neighbor quantization levels can obtain
better results, but too-high neighbor quantization levels cause the
reduction of the discriminative capability. Note that the best
neighbor quantization level for Outex TC10 dataset is 4. Moreover,
classification rates of different methods on Outex TC10 dataset are
listed in Table 1. It can be found that the LQC_C(6)N(4) performs
the best among these LBP-like operators.

4.4. Experimental results on XU High Resolution Database

The XU High Resolution texture database includes 25 classes
and 40 images in each class. The resolution of each image is
1280�960. As illustrated in Fig. 8, the images in this database are
with very large viewpoint variations. To assess classification per-
formance, N training images are randomly chosen from each class
while the remaining 40-N images are used as the test set. The
average accuracy over 100 randomly splits are listed in Table 2.

We could get the following findings from Table 2. Firstly, when
the local quantization level is 3, the LQC_C(2)N(3) and LQC_C(6)N
(3) performs better than the LTP on texture images. That is mainly
because the LTP is designed for the face recognition problem, and
it is no longer strictly invariant to monotonic gray scale
Table 1
The classification rates (%) on Outex TC10 dataset.

R¼1, P¼8 R¼2, P¼16 R¼3, P¼24

LBP 84.81 89.40 95.07
LTP 93.39 96.20 97.71
CLBP 96.56 98.72 98.93
CLBC 97.16 98.54 98.78
LQC_C(2)N(4) 97.16 98.46 98.54
LQC_C(6)N(4) 97.80 98.80 98.96

Fig. 8. Viewpoint change a lot in XU High Resolution database. Rows 1–4 sh
transformation since a fixed artificial threshold is used. Secondly,
compared LQC_C(2)N(3) with LQC_C(6)N(3), we can find that
increasing the quantization level of the central pixel can also
enhance the discriminative capability. It should be noted that
although the LQC_C(6)N(3) outperforms LQC_C(2)N(3), its feature
length is almost three times longer than the LQC_C(2)N(3). Thirdly,
when the local quantization level increases to 4, LQC_C(2)N(4) and
LQC_C(6)N(4) can achieve higher classification rates than the CLBP
and the CLBC. As aforementioned, the length of the LQC feature
size also increases a lot when the local quantization level increa-
ses. Lastly, LQC_C(6)N(5) merely slightly outperforms LQC_C(6)N
(4) by increasing the local quantization level from 4 to 5, but the
feature size of LQC_C(6)N(5) is much longer than LQC_C(6)N(4).
Thus, the optimal local quantization level is 4 on XU database by
considering both classification rates and the length of feature
vector.

By applying the multi-scale scheme, some better results could
be obtained. The multi-scale CLBP(R¼1,2,3) can reach the classifi-
cation rates of 97.89%, 96.89%, 95.83% and 91.96% for 20, 15, 10 and
5 training samples, respectively. The multi-scale CLBC(R¼1,2,3) can
reach the ones of 98.02%, 96.98%, 95.49% and 91.85% for 20, 15, 10
and 5 training samples, respectively. While the proposed multi-
scale LQC_C(6)N(4)(R¼1,2,3) achieves 98.70%, 98.10%, 97.35% and
94.74% for 20, 15, 10 and 5 training samples, respectively. Hence,
the multi-scale LQC performs better than the multi-scale CLBP and
multi-scale CLBC.

4.5. Experimental results on UIUC database

The UIUC texture database includes 25 classes and 40 images in
each class. The resolution of each image is 640�480. As shown in
Fig. 9, the database contains materials imaged under significant
viewpoint variations. In our experiment, N training images are
ow images of four different classes of the XU High Resolution database.



Table 2
The classification rates (%) on XU HR Database.

R¼1, P¼8 R¼2, P¼16 R¼3, P¼24

20 15 10 5 20 15 10 5 20 15 10 5

CLBP 96.50 95.74 94.69 91.35 97.34 96.73 95.38 91.10 97.73 96.65 95.17 91.59
CLBC 96.90 96.14 94.98 91.19 97.55 96.76 95.66 91.52 97.85 96.86 95.65 91.71
LTP 87.05 85.21 80.94 71.99 91.82 90.26 87.18 79.86 93.59 92.45 89.01 80.90
LQC_C(2)N(3) 95.21 94.13 92.70 88.32 94.05 93.12 90.13 83.53 93.63 92.54 90.23 85.27
LQC_C(6)N(3) 96.53 95.74 94.63 91.51 95.75 94.51 92.94 89.27 95.89 94.88 93.47 90.13
LQC_C(2)N(4) 97.37 96.26 94.74 91.59 98.07 97.00 95.53 92.36 98.15 97.09 95.62 92.18
LQC_C(6)N(4) 97.90 97.48 96.23 93.35 98.75 97.88 96.61 93.96 98.70 98.10 97.13 94.04
LQC_C(6)N(5) 98.12 97.54 96.39 93.69 98.88 98.00 97.01 94.02 98.74 98.22 97.26 94.23

Fig. 9. Viewpoint change a lot in UIUC database. Rows 1–4 show images of four different classes of the UIUC database.
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randomly chosen from each class while the remaining 40-N ima-
ges are used as the test set. The average accuracy over 100 ran-
domly splits are listed in Table 3.

Similar findings to those in Section 4.3 can be found in Table 3.
Firstly, when the local quantization level increases to 4, the LQC_C
(2)N(4) and LQC_C(6)N(4) outperforms LQC_C(2)N(3) and LQC_C
(6)N(3). Secondly, LQC_C(2)N(4) and LQC_C(6)N(4) still perform
better than the CLBP, the LTP and the CLBC. Lastly, the LQC_C(6)N
(4) can achieve higher classification rates than LQC_C(2)N(4), but
its feature sizes are almost three times longer than the LQC_C(2)N
(4). Besides, when the local quantization level is as high as 5, the
classification rates of the LQC_C(6)N(5) are 93.19%, 91.11%, 88.34%
and 81.97% at (R¼3, P¼24) for 20, 15, 10 and 5 training samples,
respectively. The performance of the LQC_C(6)N(5) is similar to
LQC_C(6)N(4), while the feature length of the former one is much
longer. Thus, the optimal local quantization level is still 4 on the
UIUC database.
By utilizing the multi-scale scheme, the multi-scale CLBP(R¼1,2,3)

can reach the classification rates of 91.57%, 89.84%, 86.73% and
78.42% for 20, 15, 10 and 5 training samples, respectively; the multi-
scale CLBC(R¼1,2,3) can reach the ones of 92.42%, 90.66%, 87.75% and
80.22% for 20, 15, 10 and 5 training samples, respectively; the pro-
posed multi-scale LQC_C(6)N(4)(R¼1,2,3) achieves 93.40%, 91.68%,
89.47% and 82.05% for 20, 15, 10 and 5 training samples, respectively.
It can be found that the multi-scale LQC still performs better than the
multi-scale CLBP and multi-scale CLBC.
4.6. Experimental results on CUReT database

The CUReT database includes 61 classes of textures captured at
different viewpoints and illumination orientations (see Fig. 10). In
each class, 92 images are selected from the images shot from a
viewing angle of less than 60°. As in [13,22], N images were ran-
domly chosen as training samples from each class. The remaining



Table 3
The classification rates (%) on UIUC Database.

R¼1, P¼8 R¼2, P¼16 R¼3, P¼24

20 15 10 5 20 15 10 5 20 15 10 5

CLBP 87.64 85.70 82.65 75.05 91.04 89.42 86.29 78.57 91.19 89.21 85.95 78.05
CLBC 87.83 85.66 82.35 74.57 91.04 89.66 86.63 79.48 91.39 90.10 86.45 79.75
LTP 67.16 64.29 58.20 48.15 79.25 75.80 70.77 60.34 82.34 79.10 73.94 62.19
LQC_C(2)N(3) 82.94 80.85 76.61 69.95 81.80 79.68 74.75 65.85 81.64 79.32 74.76 63.22
LQC_C(6)N(3) 83.79 81.67 78.47 71.58 82.22 79.94 75.90 67.61 82.54 79.45 75.43 67.13
LQC_C(2)N(4) 89.45 87.70 83.58 76.23 92.32 90.58 87.67 81.48 92.94 90.39 87.54 81.64
LQC_C(6)N(4) 90.12 88.54 85.62 78.38 92.62 90.76 87.97 81.98 93.17 90.91 88.13 81.77

Fig. 10. 61 texture images from the CUReT database.

Table 4
The classification rates (%) on CUReT Database.

R¼1, P¼8 R¼2, P¼16 R¼3, P¼24

46 23 12 6 46 23 12 6 46 23 12 6

LBP 80.03 73.07 67.60 58.68 84.05 79.05 72.01 62.73 86.06 81.63 75.51 67.00
CLBP 95.19 91.20 83.81 73.44 95.35 91.24 84.66 75.41 95.38 91.77 85.01 76.16
CLBC 94.78 90.12 82.92 72.85 95.39 91.30 85.91 75.17 95.26 90.55 84.07 73.18
LTP 85.77 78.49 70.77 60.48 90.21 84.74 76.24 66.75 91.04 85.15 77.88 68.64
LQC_C(2)N(4) 95.50 91.44 84.21 73.72 95.55 91.74 85.96 75.69 95.41 91.89 85.15 76.20
LQC_C(6)N(4) 92.07 86.37 79.18 71.47 92.84 87.29 80.12 74.55 92.75 85.70 77.94 76.11
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Table 5
The classification rates (%) on KTH-TIPS Database.

R¼1, P¼8 R¼2, P¼16 R¼3, P¼24

40 20 10 5 40 20 10 5 40 20 10 5

LBP 92.85 84.59 75.10 63.69 88.32 82.02 70.59 60.54 79.83 74.87 66.10 57.29
LTP 92.37 86.08 75.34 65.13 93.24 86.20 75.73 66.84 90.39 85.79 76.01 64.59
CLBP 95.33 91.07 84.66 73.71 96.15 89.51 83.45 73.51 95.27 89.30 80.94 73.05
CLBC 95.34 90.18 83.41 72.78 93.68 88.38 79.98 71.16 91.12 85.92 74.89 68.62
LQC_C(2)N(4) 95.83 91.16 84.72 74.71 96.05 90.30 82.87 73.51 94.77 89.67 82.10 71.24
LQC_C(6)N(4) 96.39 91.25 84.82 74.74 96.23 90.38 83.54 74.22 95.31 89.82 82.27 74.53

Table 6
Classification rates (%) of different methods on three databases.

Outex database CUReT database UIUC database

TC10 46 23 12 6 20 15 10 5

LQC_C(2)N(4)(R¼3) 98.54 95.41 91.89 85.15 76.20 92.94 90.39 87.54 81.64
LQC_C(6)N(4)(R¼3) 98.96 92.75 85.70 77.94 76.11 93.17 90.91 88.13 81.77
VZ_Joint 98.51 96.51 93.42 88.22 79.14 93.27 92.00 88.39 80.87
VZ_MR8 94.06 97.86 95.54 91.28 83.46 93.96 92.68 89.32 83.07
MFSþSVM [32] – – – – – 92.74 91.38 88.36 82.24
WMFSþSVM [32] – – – – – 98.60 98.01 96.95 93.42
GDF-HOG [33] – – – – – 88.63 – – –

Eig(Hess)-HOG [33] – – – – – 85.71 – – –

Eig(Hess)-CoHOG [33] – – – – – 96.82 – – –

GM-CoHOG [33] – – – – – 98.41 – – –
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92-N images were used as test samples. The average classification
rates over 100 random splits are listed in Table 4.

We could get the following observation from Table 4 Firstly, the
LQC_C(2)N(4) still get better classification results than other variants
of LBP. Secondly, different to the performances on the other two high
resolution databases, the LQC_C(6)N(4) performs worse than the
LQC_C(2)N(4) on CUReT database. The performances of the LQC
become worse when the local quantization level further increases.
The main reason is that the resolution of the image in CUReT data-
base is very small (200�200). As mentioned before, the statistical
error will be increased when the LQC statistical histogram is too long
and the pixels are comparatively not enough. As a result, when the
texture images are with small resolution, the quantization level
should not be set too high. Finally, the optimal local quantization
level is still 4 on the CUReT database.

4.7. Experimental results on KTH-TIPS database

The KTH-TIPS database contains images of 10 materials. There
are eighty one 200�200 images for each material with different
combination of pose, illumination and scale. In this paper, 40, 20,
10, and 5 images of each material are utilized for training and the
remaining images are used for testing.

The performance of different LBP-like methods on KTH-TIPS is
listed in Table 5. From Table 5 we can get the following findings.
Firstly, the LTP, the CLBP, and the LQC_C(2)N(4) achieve the highest
classification rates at (R¼2, P¼16), while the LBP, the CLBC, and
the LQC_C(6)N(4) perform the best at (R¼1, P¼8). Secondly, the
proposed LQC can obtain better results than the LTP, the CLBP, and
the CLBC. Furthermore, the LQC_C(6)N(4) gets the highest classi-
fication rates among these LBP-like operators.

4.8. Compared with recent non-LBP methods

The LBP and its variants use specified local patterns to form
texture histogram. Instead of utilizing the fixed texture patterns,
Varma and Zisserman [29] proposed to cluster the textons by
means of the max responses of several filters (VZ_MR8). In [28],
they proposed to find a dominant orientation of the local patch to
address the rotation invariant issue (VZ_Joint). In these afore-
mentioned works, the spatial information of how pixels are dis-
tributed is lost. Aiming at this demerit of the global texture
descriptors, Xu et al. [30,31] proposed a scale invariant texture
feature by using the multi-fractal spectrum (MFS). Recently, Xu
et al. [32] presented a new descriptor based on multi-fractal
analysis in wavelet pyramids of texture images (WMFS). In [33],
Hanbay et al. proposed four state-of-the-art rotation invariant
gradient features based on HOG and CoHOG, i.e., GDF-HOG, Eig
(Hess)-HOG, Eig(Hess)-CoHOG, and GM-CoHOG.

The performance of the proposed LQC at (R¼3, P¼24) is
compared with that of these non-LBP methods. The experimental
results of MFS and WMFS on UIUC database are from [32], and the
results of four gradient-based methods on UIUC database are from
[33]. The experimental results on three texture databases are listed
in Table 6.

We could get the following findings from Table 6. Firstly, the
proposed LQC achieves similar classification rate to VZ_Joint on
these databases. It should be noticed that the VZ_Joint requires a
texton generation process, which often cost several hours. While
the LQC is computationally efficient since it does not require tex-
ton generation step. By the same hardware the LQC_C(6)N(4) only
takes 65 milliseconds, while VZ_Joint spends about 700 seconds to
build a texture histogram for one image. Therefore, this LBP-like
operator is much more efficient than VZ_Joint. Secondly, compared
the LQC with VZ_MR8, the LQC_C(6)N(4) performs better than
VZ_MR8 on Outex database, and the VZ_MR8 performs slightly
better on other databases. Similar to VZ_Joint, VZ_MR8 also need
to cluster the textons from the training set, and total 38 filters are
used in the MR8 filter bank. Compared to VZ_MR8, the proposed
LQC is more simple and faster. Thirdly, the MFS is proved to be
robust to viewpoint changes [30] and it performs impressively on
the UIUC database, which contains materials imaged under
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significant viewpoint variations. Both the LQC and the MFS are
computation efficient, and their performances on the UIUC data-
base are also similar to each other. Fourthly, WMFS performs much
better than other methods on the UIUC database. It also should be
noticed that the scales of the images are normalized before the
multi-orientation wavelet pyramid multi-fractal analysis in WMFS
[32]. The scale estimation and normalization step can greatly
enhance the performance of the WMFS, which is not applied in
other methods. Finally, two CoHOG based methods, Eig(Hess)-
CoHOG and GM-CoHOG [33], achieve much better results than the
proposed LQC on UIUC database. Note that the proposed LQC
merely counts the number of pixels on different quantization
levels and neglects orientation-related information to ensure the
LQC is strictly rotation-invariant. The Eig(Hess)-CoHOG and GM-
CoHOG can extract abundant gradient orientation information
which is omitted in the proposed LQC. Hence, the proposed LQC
can be combined with these CoHOG based features to further
enhance the discriminative capability. In one word, the LQC
achieves comparable classification rate to other recent non-LBP
texture classification methods except the WMFS and CoHOG based
features on UIUC database.
5. Conclusions

In this paper, we try to search an optimal local quantization
level to describe the rotation invariant local texture by proposing a
novel local descriptor of Local Quantization Code (LQC). A LBC-like
feature is used in the proposed LQC and the average local gray
value difference is adopted to set a series of quantization thresh-
olds. The experiment on several real-captured texture databases
demonstrates that the proposed LQC outperforms some LBP-like
operators, and also illustrates that a low local quantization level
(2–4) can effectively characterize the local gray level distribution.
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