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Abstract—In recent years, many deep-network-based
super-resolution techniques have been proposed and
achieved impressive results for 2× and higher magnifica-
tion factors. However, lower magnification factors encoun-
tered in some industrial applications have not received spe-
cial attention, such as 720P-to-1080P (1.5× magnification).
Compared to traditional 2× or higher magnification factors,
these lower magnifications are much simpler, but recon-
structions of high-definition images are time consuming
and computationally complex. Hence, in this paper, a fast
image upsampling method is designed specifically for in-
dustrial applications at low magnification. In the proposed
method, edge and nonedge areas are first distinguished
and then reconstructed via different fast approaches. For
the edge area, a local edge pattern encoding-based method
is presented to recover sharp edges. For the nonedge area,
a global iterative reconstruction with texture constraint is
utilized. Moreover, some acceleration strategies are also
presented to further reduce the complexity. The experi-
mental results demonstrate that the proposed method can
obtain performance comparable to that of some state-of-
the-art methods for 720P-to-1080P magnification, but the
computational cost is much lower.

Index Terms—Super-resolution, low magnification, up-
sampling

I. INTRODUCTION

The development of video display technology has under-
gone a series of changes: from black and white to color, from
2D to 3D, and from standard definition to high definition. With
the rapid development of display screens, the resolutions of
recent televisions and mobile devices are becoming increas-
ingly higher. Unfortunately, many current videos are still low-
resolution (LR) rather than full-high-definition (FHD) or ultra-
high-definition (UHD). These LR resources cannot satisfy the
demands of high-resolution (HR) devices. To overcome this
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problem, super-resolution (SR) has become a fundamental and
important technique for computer vision, image processing,
and related industrial applications. The goal of SR is to recover
HR frames from LR frames, which is a typical ill-posed
problem since the details are missing in LR images. At present,
high-performance and low-cost SR techniques are still in high
demand by the video industry.

Many SR approaches have been proposed over the past
decades [1]. Many early works are based on multiframe SR
[2]. To avoid the artifacts caused by the difficult alignment
process in multiframe SR, single-image SR (SISR) methods
have received more attention. Recent SISR methods can be
roughly divided into three categories, i.e., interpolation-based
methods, reconstruction-based methods, and learning-based
methods. Interpolation [3] is the most basic SISR method,
where the missing pixels are filled by fixed interpolated
kernels, but this approach often generates unnatural artifacts.
The reconstruction-based methods were originally designed
for multiframe SR tasks [2], and such methods utilize the
similarity constraint that the upsampled result should be con-
sistent with the LR input [4], [5]. However, the missing high-
frequency (HF) information can hardly be reproduced with
these two types of methods. Learning-based methods [6] have
thus become the most popular approach to learn from inner
or extra exemplars. Various typical learning-based SISR mod-
els have been proposed, such as neighbor-embedding-based
methods [7], [8], sparse-representation-based methods [9]–
[11], and local self-similarity-based methods [12]. However,
these learning-based SISR methods are often time consuming
because the weights or coefficients are optimized for each
local patch. Aiming to avoid the time-consuming patch-by-
patch optimization, many efficient SR techniques have been
proposed, e.g., anchored neighbor regression (ANR)-based
methods [13], [14], random-forest-based methods [15], local-
classification-based methods [16], and deep neural network
(DNN)-based methods [17].

Over the past several years, increasingly more DNN-based
SISR methods have been reported [18]–[27]. Due to their
deeper architectures and larger datasets, current DNN models
have a powerful fitting ability for nonlinear regression tasks.
Hence, these DNN-based methods have achieved impressive
performance, e.g., the LeNet-5-model-based SRCNN [17],
the VGGNet-model-based VDSR [18], the residual network
(ResNet)-based SR-ResNet [19], and the efficient pixel shuf-
fling network [20]. In 2017, an influential SISR competition
was held [21], and many outstanding ResNet-based methods
have since been proposed, such as EDSR [22], denoising-



network-based SR [23], the deep Laplacian pyramid network
[24], the deep backprojection net [25], the gradual upscaling
network [26], [36], and the residual dense network [27].
However, the main purpose of many SR industrial applications
is to generate high-quality images with a low cost. Recent
state-of-the-art DNN methods may have some weaknesses for
specific industrial applications [28], [29], and these drawbacks
are summarized as follows:
1) These networks are implemented in an end-to-end mode,

but in practice, the LR inputs are often transmitted line-
by-line and patch-by-patch rather than directly obtaining
an entire frame.

2) The input image is processed simultaneously in multiple
channels of the network. Hence, the memory cost of DNN-
based methods is related to the number of channels and
the resolution of the inputs. For example, SRCNN [17]
employs 64 channels, and therefore, 64 frame buffers of
4K/2K resolution are required for UHD/FHD image SR.

3) Although these DNN-based methods have achieved much
higher PSNRs than traditional methods, the subjective
quality has not significantly improved for small magni-
fication factors. In addition, the frames in the video are
constantly moving; thus, the visual quality differences
become even more difficult to perceive.

Current SISR methods mainly focus on 2× or higher magni-
fication factors, i.e., 3×, 4×, and 8×. However, in some indus-
trial applications, magnification factors may be much lower,
such as 1.5× (720P-to-1080P). For video industry, many 720P
videos, which do not have corresponding 2K/4K sources,
need to be upsampled via SR techniques. For display device
industry, 720P video resources also need to be magnified to fit
current FHD or FHD+ screens. This paper proposes a simple,
efficient, and low-cost SISR method designed specifically
for SR industrial demands with low magnification, which
is named the FAst Super-resolution Technique (FAST). The
proposed method does not focus on pursuing a higher PSNR
value but tends to meet the requirements of related industrial
applications. The experimental results demonstrate that the
proposed method can achieve visual quality comparable to that
of some state-of-the-art methods with a much lower cost.

The remainder of this paper is organized as follows. Section
II analyzes the motivation for the proposed method. Section III
presents the proposed FAST in detail, and the experimental re-
sults are discussed in Section IV. Finally, Section V concludes
the paper.

II. THE “CRIME AND PUNISHMENT” OF PSNR
PSNR is the most commonly used and basic objective image

quality metric, and it is widely applied in many computer
vision and image processing scenarios. However, does PSNR
really work well for SISR? In many SISR approaches [9],
[11], [31], researchers have observed that PSNR values are
often inconsistent with the subjective quality. In [37], it is
mathematically proven that the common distortion measures
are at odds with perceptual quality. Unfortunately, an accurate
quality assessment for SR results is lacking. Consequently,
PSNR is still widely adopted in SR methods and is even the
most important measure for evaluating an SR method.

Fig. 1. The 1.5× upsampled results of different methods. (a) Original
HR image, (b) bicubic, (c) LPE [16], (d) SRCNN [17], (e) VDSR [18], and
(f) ResNet.

Recent DNN-based SR methods keep increasing the record
PSNR values [21].This is partially because the l1/l2-loss
naturally satisfies the PSNR assessment since the training
phase is directly designed to increase the PSNR. However, the
increase in PSNR values does not correspond to a significant
improvement in visual quality, especially for small magnifi-
cation factors. Fig. 1 presents the 1.5× upsampled results of
some learning-based methods in 720P-to-1080P applications.
When quickly examining Figs. 1 (d), (e), and (f), it is difficult
to distinguish the differences among the results of various
DNN-based methods, although these methods obtain clearly
different PSNR values. Subjective testing has been performed
for 1.5× magnification of several 2K images, and the average
mean opinion scores (0 ∼ 5) of bicubic, LPE, SRCNN,
VDSR, and ResNet are 4.47, 4.94, 4.90, 4.93, and 4.951,
respectively. This testing also reveals that the viewers cannot
exactly distinguish the differences in visual quality of these
methods when the upsampling factor is too small.

Therefore, the following question is raised. The DNN-based
methods have high computational complexity and are highly
dependent on GPU hardware, but the improvement in visual
quality is not as conspicuous as the increase in the PSNR
values. Are these complex networks really needed for SISR
applications with small magnification factors, such as 1.5×?
This question is the direct motivation for the fast and low-cost
FAST method proposed in this paper.

1The implementation details and more discussions of the subjective
testing can be found in the supplementary materials:
http://yzhaocv.weebly.com/projectpage/fast.



Fig. 2. The framework of the proposed method.

III. THE PROPOSED METHOD

As illustrated in Fig. 3, the proposed FAST method consists
of two streams of processes, i.e., the edge pattern recon-
struction for edge areas and texture-constrained backprojection
(BP) for nonedge areas. For edge areas, an efficient local
encoding process is utilized to encode different local edge
patterns and then reconstruct each type of edge pattern with a
learned projection matrix. For nonedge areas, which constitute
most of a natural image, a simple and fast global BP method
is introduced to refine the textural details and avoid noises
in flat areas. Finally, an additional postprocessing is applied
to remove the slight artifacts caused by combining two dif-
ferent types of methods. In the following, each component is
discussed in detail.

A. Focusing on the Edge Patterns

In the patch-by-patch reconstruction process of traditional
learning-based SR methods [9], [13], [16], [30], different
types of local patches are treated as being equally important.
However, the human visual system (HVS) has been proven
to be more sensitive to sharp edge patterns [32], and these
sharp edge patterns occupy only a small percentage of an
image. Conversely, although flat and texture patterns account
for most of a natural image, the reconstruction of these patches
does not significantly improve the visual quality. Hence, in this
paper, the input LR images are divided into edge and nonedge
areas, and learning-based refinement is applied on only the
edge patches.

The local gray-value difference is used to measure the
degree of local variation, and it can be calculated as

sLD =
1

9

9∑
i=1

(gi − ḡ), (1)

where gi(i = 1, 2, ..., 9) denotes the pixels on a local 3 × 3
patch and ḡ = 1

9

∑9
i=1 gi. Note that this simple local gray-

value difference sLD is also reused in the following texture
reconstruction and postprocessing to avoid extra computational
cost. After sLD of each pixel is computed, the average local
gray-value variance of the entire image is then denoted as ¯sLD.
The edge patterns are accordingly defined as the patches that
have a clearly larger local difference than other patches, as
follows:

sLD > λ ¯sLD, (2)

where λ is an artificial parameter to adjust the number of
edge patterns. The percentages of edge patterns on the DIV2K

Fig. 3. Detected edge patterns with different λ (these edge patterns are
marked in purple).

Fig. 4. The percentages of edge patterns on different types of 2K
images.

dataset [21] with different λ are listed in Table I. For intuitively
illustrating the results of edge pattern detection, an example is
shown in Fig. 4. From Table I and Fig. 4, we find that a small
λ leads to more edge patterns, whereas a large λ (i.e., λ = 5)
merely extracts the sharpest edges and omits other edges. To
balance the computational cost and the coverage of detected
edge patterns, the parameter λ is experimentally set as 2 in
this paper.

TABLE I
PERCENTAGES OF EDGE PATTERNS WITH DIFFERENT VALUES OF

PARAMETER λ (%)

λ 1.0 1.5 2.0 2.5 3.0 5.0 10.0
Percent 19.86 14.51 11.32 9.05 7.31 2.66 0.04

To illustrate the percentages of edge patterns on different
types of images, several 2K images are classified into six
common categories, i.e., faces, traffic, animals, buildings,
plants, view, and others. The percentages of edge patterns for
each category are illustrated in Fig. 5. As shown, the edge
patterns are often less than 20% of the whole image, and thus,
focusing on the reconstruction of edge patterns can naturally
accelerate the SR process.



B. Edge Pattern Encoding and Reconstruction

The local patch encoding (LPE)-based method [16] can
effectively distinguish different local patches and learn the
corresponding projection matrix for each class. However, the
LPE method has some disadvantages for SISR applications.
First, there are too many precomputed projection matrices
(PPMs) that need to be calculated in LPE. For instance, 12-
bit and 17-bit LPEs request 212 and 217 PPMs, respectively.
Second, these PPMs are learned equally and do not focus on
primary patterns. Third, the size of the PPMs is decided by the
size of patches. For example, to magnify an m×m LR patch
to an n × n HR patch, the PPM has a size of m2 × n2. The
complexity of reconstruction is thus O(m4n2). Hence, some
methods [16] enforce the smallest 3 × 3 patch to accelerate
the reconstruction process.

Based on these analyses, the proposed edge pattern recon-
struction process adopts the following strategies to reduce the
computational complexity and memory cost. First, the PPMs
are only calculated for the edge patterns, which are often
less than 20% in natural images. Second, a 9-bit code is
introduced in the proposed FAST, and the pre-computed PPMs
are thus 23 ∼ 28 times less than that of the LPE methods.
Third, a small number of edge patterns are further manually
selected according to their importance. Finally, to reduce the
size of PPMs, the patch size is set as 3× 3. This size is also
naturally suitable for the proposed 9-bit encoding. Due to these
effective strategies, the computational cost of the projection
reconstruction process in FAST is much less than that of the
LPE methods.

Motivated by the famous local texture descriptor local
binary pattern, the simple 9-bit local encoding is computed
as

c =
1

9

9∑
i=1

s(gi − ḡ)2i−1, s(x) =

{
1, x ≥ 0

0, x < 0
(3)

where gi and ḡ have been defined in Eqn. (1).
Since the encoding is calculated on a local 3×3 patch, there

are a total of 29(512) types of codes. However, note that these
patterns are not equally important. As shown in Fig. 6, the
frequencies of various local edge patterns are counted on the
DIV2K set [21]. Some principal patterns with a high frequency
of occurrence can be found, while other patterns rarely appear
in the edge area. In the proposed method, 55 types of the
most frequent edge patterns are first manually selected from
the total of 512 types of patterns. Although these patterns are
merely one-eleventh of the total categories, their frequencies of
occurrence account for more than 93.4% of the total number.
There are mainly two reasons for why only 55 types of
principal patterns are utilized. First, fewer edge patterns can
further reduce the number of PPMs and the time cost of
the projection reconstruction. Second, a PPM computed with
insufficient exemplars may lead to reconstruction errors if the
PPMs are computed for all the edge patterns. Fig. 7 illustrates
the most frequent edge patterns, and these patterns contain
several typical edge structures, such as tiny lines, spots, and
corners. Note that the proposed 9-bit code is encoded in a
zigzag mode, from top to bottom and left to right.

Fig. 5. The frequency histogram of various local edge patterns.

Fig. 6. The 55 types of most frequent edge patterns.

After the local encoding process, the edge patterns can
be classified into a total of 55 categories according to their
codes. The other low-frequency patterns are simply upsampled
with bicubic interpolation. Then, a projection matrix can
be computed for each class of edge patterns by utilizing
traditional ridge regression or other embedding methods [13],
[16], [38]–[43] . In this paper, K(K = 4096) exemplars are
randomly chosen from each class of edge patterns, and the LR
patch y can be represented by means of the K LR samples
LcK with the same code c,

arg min
α

||y − αLcK ||22 + β||α||22, (4)

where β is a weighting factor to stabilize the solution and
experimentally set as 0.1 in this paper. The closed-form
solution of Eqn. (4) can be calculated as

α = (LcK
TLcK + βI)−1LcK

Ty. (5)

The HR patch x can then be estimated by the optimized
weight α and corresponding K HR samples Hc

K of the c-th
class, as follows:

x = Hc
Kα = Hc

K(LcK
TLcK + βI)−1LcK

Ty. (6)

The PPM P c of the c-th class can thus be defined as

P c = Hc
K(LcK

TLcK + βI)−1LcK
T . (7)

In the training phase, a total of 55 PPMs {P c}55c=1 are
precomputed by means of the randomly selected sample-pairs



in each class. In the SISR reconstruction phase, an LR edge
patch ycedge only needs to be encoded to obtain its code c by
means of Eqn. (3) and then multiplied by the corresponding
PPM P c to generate the HR edge patch xcedge,

xcedge = P cycedge. (8)

C. Texture-Constrained BP for Nonedge Areas
Flat and texture areas occupy the majority of natural images.

For flat areas, it is clear that complicated reconstruction is not
helpful for improving the visual quality. The main purpose of
flat area SR is to avoid noise, banding, and ringing artifacts
caused during the process. However, texture areas contains
various and abundant changes in local differences. Hence, the
SR of texture areas should focus on recovering missing HF
components. BP is a traditional and fast method for enhancing
textural details, which is mainly based on the global similarity
constraint. However, conventional BP also tends to produce
undesirable artifacts on edge and flat areas. To inherit the
advantages and simultaneously overcome the disadvantages
of the traditional BP method, an additional texture structure
constraint is presented to constrain the HF details to be
consistent with the original image texture, as follows:

X∗ = arg min
X

||DHX −Y ||22 +λT ||TDHX −TY ||22, (9)

where D denotes a downsampling operator; H is a blurring
filtering operator; X and Y denote HR image and LR image,
respectively; T denotes a local gray-value difference extrac-
tion operator;, and λT is a parameter to balance the global
similarity and texture stability. In this paper, the local gray-
value difference of each pixel is also calculated by means of
Eqn. (1) such that the precomputed sLD can be reused in this
BP process without introducing extra computational cost. Eqn.
(9) can then be estimated by updating X using an iterative
formula as

Xt+1 = Xt + λTH
TUTY (DHXt − Y ), (10)

where Xt is the estimated HR image after the t-th iteration and
U denotes the upsampling operator. TY represents the local
gray-value difference matrix of Y , in which each element is
calculated by Eqn. (1). TY can be regarded as a texture coef-
ficient matrix. In flat areas, the coefficients in TY are small,
and these small coefficients can suppress noises. In nonflat
texture areas with large local differences, the coefficients are
large to enhance the HF details. The texture areas can then
be reproduced by performing Eqn. (10) within appropriate
iterations. In our experiments, λT is typically set as 0.1/m̄,
where m̄ denotes the mean value of coefficient matrix TY .

Fig. 8 illustrates the SR results of traditional BP and the
proposed BP with texture constraint. By comparing the close-
ups of texture areas (Figs. 8(b), (c)), it can be found that the
proposed BP can recover clearer texture than the traditional
BP and bicubic methods. Figs. 8 (e) and (f) show examples
of upsampled flat areas, where we can find that traditional BP
enhances some noises in flat areas, while the proposed BP can
effectively suppress them by applying texture structure as an
extra constraint.

Fig. 7. Upscaled results of different BP methods. The first row shows
close-ups of texture areas with different methods: (a) bicubic, (b) tra-
ditional BP, (c) the proposed BP. The second row shows close-ups of
flat areas with different methods: (d) bicubic, (e) traditional BP, (f) the
proposed BP.

Fig. 8. Close-ups of boundary of edge and nonedge areas: (a) without
the postprocessing, (b) final result with the post-processing.

D. Postprocessing

In the proposed hybrid framework, the edge and nonedge
areas are processed with different methods. Consequently,
the direct combination of these two areas may cause some
nonsmooth and discontinuous artifacts around the combination
boundary. Postprocessing is thus utilized to remove these
potential artifacts.

In the postprocessing, an additional BP is used as the
global similarity constraint to suppress the nonsmooth arti-
facts. However, the global iterative process also damages the
reconstructed edges. Hence, the additional BP process is not
applied around edges. The iterative formula is described as
follows:

Xt+1 = Xt + rHTU [M(1−E)(DHXt − Y )], (11)

where E is the binary map of the edge area, M denotes
morphological eroding operation, and the iterative parameter
r is set as 0.01. Indeed, the nonsmooth artifacts are quite
inconspicuous if we do not magnify the local details. The fast
postprocessing only iterates a few times (2 ∼ 5 times), and
it can effectively eliminate these slight artifacts. In Fig. 9(a),
some nonsmooth pixels are marked with blue circles. These



artifacts can be removed by the postprocessing, as illustrated
in Fig. 9(b).

IV. 720P-TO-1080P SISR EXPERIMENTS

A. Test Image Sets and Compared Methods
Current SISR methods are mainly tested on commonly used

datasets for 2×, 3×, and 4× magnifications, i.e., Set5, Set14
[10], and B100 [13]. The proposed method is specifically
designed for industrial applications with lower magnification,
which is often neglected in traditional SISR methods. Hence,
the experiments are implemented for a 720P-to-1080P (1.5×)
task. Several 2K images are randomly selected from the
DIV2K validation set [21] for testing. These 2K images are
first downsampled to 720P to generate LR input and then
upsampled with different SISR methods. For color images,
only the Y channel is magnified with these methods, and
the Cb and Cr channels are simply upsampled via bicubic
interpolation.

To validate the effectiveness of the proposed method, FAST
is compared with several recent state-of-the-art methods, i.e.,
ANR [13], LPE and LPE P2 [16], SRCNN [17], VDSR [18],
and the ResNet-based method [22]. Note that these learning-
based methods are designed for 2× or larger magnification,
and thus, these methods have been retrained on DIV2K. The
DNN-based methods SRCNN, VDSR, and ResNet are already
trained for the 2× task and then fine-tuned with 1.5× samples.
The structure of the residual blocks of ResNet is set as the
EDSR [22] rather than ordinary SR-ResNet [19], but note
that this ResNet is implemented without the pixel-shuffling
process utilized in EDSR. Thus, the input 720P image is first
interpolated to 1080P with bicubic interpolation, and then the
network is trained to directly reconstruct the 1080P input.

B. Subjective Testing
As mentioned previously, the PSNR cannot accurately char-

acterize the visual quality of the SR results. Hence, subjective
testing is also applied to evaluate the performance. In this
paper, the subjective testing is implemented in two ways, i.e.,
direct rating and pairwise comparison. A total of 20 subjects
are invited to participate in the experiment, and the tested
images are displayed on a 72-inch UHDTV with NVIDIA
Titan X GPUs2.

For direct rating, the original 2K images are provided as
references. The viewers are then required to rate the images
from 1 to 5 by comparing with the ground truth. The mean
opinion scores are shown in Fig. 10, from which we can find
that although the ground truth is also provided, most of the
viewers still cannot distinguish the 1.5× upsampled results of
the state-of-the-art methods and the original HR images. The
proposed FAST, the recent LPE, and the DNN-based methods
have all been scored with near full marks. This result indicates
that the subjective quality of these methods is good enough
for 1.5× magnification.

Fig. 11 presents the upsampling results of various methods,
from which we can obtain the following observations. First,

2More details can be found in the supplementary materials.

Fig. 9. The mean opinion scores of different SISR methods.

although bicubic interpolation produces noticeable blur and
jagged artifacts for 2× and higher magnifications, the 1.5×
magnified result of bicubic interpolation appears to be satis-
factory. This result is because the 1.5× task is much easier
than traditional 2×, 3×, and 4× magnifications. Second, LPE,
DNN-based methods, and the proposed method can reproduce
clearer and sharper results than the bicubic and ANR methods.
Unfortunately, it is quite difficult for the viewers to indicate
which of the results is better than the others.

Fig. 12 shows the SR results on sharp edge areas. By
comparing the upsampled characters, it can be found that the
bicubic interpolation blurs the edges, and the LPE method,
the DNN-based methods, and the FAST method still recover
sharp and natural results. Note that ResNet tends to sharpen
tiny lines, and the reconstructed characters appear to be even
sharper than the original HR ground truth. By comparing the
HR ground truth and the upsampled results with the FAST
method, the proposed method can obtain high fidelity results.

In the paired comparison testing, the upsampled results
of two different methods are simultaneously displayed on
the screen, and the viewer only needs to mark which one
is visually better. Each method is compared with all other
methods, and then the compared results are accumulated to
calculate the scores, as follows:

Sj =

Nm∑
i=1,i6=j

C(aj , ai), C(a, b) =

{
1, if a is better

0, else

(12)
where Nm denotes the total number of tested methods, aj
is the tested method, and ai denotes another method. Note
that some unreasonable cases may exist, particularly when the
tested images have similar quality. For instance, if aj1 is better
than aj2 and aj2 is better than aj3, then aj1 should be better
than aj3. When aj3 is scored higher than aj1, an unreasonable
circular triad case occurs. In this paper, the Kendall coefficient
of consistency (KCC) [33] is used to measure the consistency
of the subjective scores, which is calculated as

δ = 1− 24Nc
Nm(N2

m − 1)
, (13)

where Nc is the number of unreasonable cases. In the ex-
periment, we found that most of the failure cases appear
during the comparisons of the LPE, FAST, and DNN-based
methods. This result also demonstrates that these methods
have comparable visual quality. The final score can then be



Fig. 10. The 1.5× upsampled results of different methods. (a) The HR images, (b) bicubic, (c) ANR [13], (d) LPE [16], (e) SRCNN [17], (f) VDSR
[18], (g) ResNet, (h) the proposed FAST.

Fig. 11. The 1.5× upsampled results of different methods. (a) The HR images, (b) bicubic, (c) ANR [13], (d) LPE [16], (e) SRCNN [17], (f) VDSR
[18], (g) ResNet, (h) the proposed FAST.

computed as the mean score of all the viewers, and each score
has been weighted by the KCC δ of the corresponding viewer.
The weighted subjective scores are also shown in Fig. 10, and
the proposed FAST can achieve visual quality comparable with
that of these state-of-the-art methods.

C. Objective Testing

Table II shows the PSNR results of these methods for 1.5×
magnification. Note that another commonly used assessment,
SSIM, is not listed in this paper because the SSIM values
of different 1.5× results are too similar. For example, the
average SSIMs for bicubic, FAST, and VDSR are 0.9993,
0.9995, and 0.9996, respectively. By comparing the PSNR
values in Table II, the following findings can be obtained.
First, the learning-based method can achieve a much higher
PSNR than the bicubic method. Second, the FAST and LPE
methods obtain comparable PSNR values. Third, although the

subjective quality is still similar to other DNN-based methods,
ResNet clearly outperforms other methods.

Table III lists the average reconstruction times of differ-
ent methods. The VDSR and ResNet methods are executed
on an Intel Core i7 PC with NVIDIA Titan X GPUs and
the MatConvNet package [34], while the other methods are
implemented on an Intel Core i5 laptop PC with MATLAB.
The computational time of the SISR method depends on
the resolution of the input image. Although these methods
are either a fast SR method or real-time method on GPU
hardware, the time cost for 720P-to-1080P reconstruction is
still high. It can be found that the proposed FAST is faster
than the other methods because of its multiple acceleration
strategies. Moreover, the proposed FAST still has much room
for acceleration, such as implementation with C or CUDA.

Note that there are other ways for further accelerating the
proposed method. For example, the filtering process [35] runs
faster than local patch projection. However, it is more difficult



to solve the optimal filters from LR patches to HR patches.
In the future, we tend to utilize the deep network as a solver
rather than an end-to-end SR technique, so that the optimal
filter or even filter banks can be calculated. The filtering
process can further accelerate the local patch reconstruction.

TABLE II
THE PSNR RESULTS OF DIFFERENT METHODS (720P-TO-1080P)

Bicubic ANR LPE LPE P2 SRCNN VDSR ResNet FAST
[13] [16] [16] [17] [18]

0803 45.17 46.83 48.47 48.45 49.17 49.21 49.35 47.96
0807 25.75 26.35 27.08 27.07 27.36 27.51 27.76 27.15
0808 32.63 33.27 34.24 34.23 34.49 34.67 34.84 34.24
0809 42.22 42.78 45.15 45.15 44.68 45.13 45.21 44.58
0817 39.11 39.65 40.93 40.92 40.86 41.14 41.34 40.75
0818 36.05 37.28 36.86 36.84 39.55 39.80 39.90 38.49
0820 31.55 32.77 34.75 34.76 35.12 35.41 35.56 34.10
0821 36.88 39.40 40.02 40.01 40.92 41.73 41.85 41.01
0833 40.22 41.20 43.59 43.59 43.27 43.83 44.03 42.64
0836 31.64 32.43 34.38 34.37 34.61 34.77 34.95 33.70
0839 35.19 35.66 36.64 36.63 36.78 36.92 37.01 36.59
0843 45.13 46.16 48.25 48.24 47.81 48.14 48.26 47.12
0844 49.26 50.68 52.11 52.13 52.02 52.20 52.25 51.15
0845 28.92 29.86 31.43 31.46 31.58 31.73 31.94 30.81
0855 35.63 36.04 37.19 37.17 37.16 37.42 37.66 37.12
0857 37.92 38.00 38.35 38.36 38.23 38.41 38.76 38.42
0863 39.45 39.85 41.14 41.12 41.09 41.27 41.46 40.97
0867 35.43 36.34 37.93 37.92 38.22 38.43 38.65 37.62
0872 30.52 31.43 32.70 32.70 33.00 33.19 33.28 32.64
0882 40.18 41.06 42.02 42.00 42.26 42.45 42.65 41.95
0896 43.76 44.80 45.52 45.51 45.66 46.01 46.21 45.51
Average 37.27 38.18 39.46 39.46 39.71 39.97 40.14 39.26

TABLE III
RECONSTRUCTION TIME OF DIFFERENT METHODS (720P-TO-1080P)

Method ANR SRCNN LPE LPE P2 VDSR ResNet FAST
(CPU) (CPU) (CPU) (CPU) (GPU) (GPU) (CPU)

Time(s) 348.4 192.0 227.9 229.2 64.2 78.3 29.7

V. CONCLUSIONS

Traditional SISR methods focus on 2× or higher magnifi-
cation factors, but lower magnification factors have not been
thoroughly discussed. This paper proposed a fast and low-
cost SISR method for special 1.5× industrial applications. For
reducing the computational complexity, the proposed method
utilizes the following strategies. First, the edge and nonedge
areas are reconstructed individually. The edge patterns are
recovered by means of a learning-based method, and the
nonedge areas are upsampled via a fast global backprojection
method with an additional texture constraint. Second, finite
edge patterns are encoded via a local encoding process, and
these patterns are further manually selected according to their
frequency of occurrence. Third, the local difference descriptor
has been reused in several steps of the proposed method. The
experimental results of 720P-to-1080P SR demonstrate that the
proposed method can obtain satisfactory visual quality and has
a considerably lower computational cost than the compared
methods.
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